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Abstract 

A method to efficiently generate a complete aerodynamic description for 
projectile flight dynamic modeling is described.  At the core of the method is an 
unsteady, time accurate computational fluid dynamics simulation that is tightly 
coupled to a rigid body dynamics simulation.  A set of n  short time snippets of 
simulated projectile motion at m  different Mach numbers is computed and 
employed as baseline data.  For each time snippet, aerodynamic forces and 
moments and the full rigid body state vector of the projectile are known.  With 
time synchronized air loads and state vector information, aerodynamic 
coefficients can be estimated with a simple fitting procedure.  By inspecting the 
condition number of the fitting matrix, it is straight forward to assess the 
suitability of the time history data to predict a selected set of aerodynamic 
coefficients.  To highlight the merits of this technique it is exercised on example 
data for a fin stabilized projectile.  The technique is further exercised for a fin 
and spin stabilized projectile using simulated data from a standard trajectory 
code. 
Keywords: projectile, flight dynamics, aerodynamic coefficients, CFD. 

1 Introduction 

There are roughly four classes of techniques to predict aerodynamic forces and 
moments on a projectile in atmospheric flight: empirical methods, wind tunnel 
testing, computational fluid dynamics simulation, and spark range testing.  
Empirical techniques aerodynamically describe the projectile with a set of 
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geometric properties (diameter, number of fins, nose type, nose radius, etc) and 
catalog aerodynamic coefficients of many different projectiles as a function of 
these features.  The database of aerodynamic coefficients as a function of 
projectile features is typically obtained from wind tunnel or spark range tests.  
This data is fit to multivariable equations to create generic models for 
aerodynamic coefficients as a function of these basic projectile geometric 
properties.  Examples of this approach to projectile aerodynamic coefficient 
estimation include Missile DATCOM, PRODAS, and AP98 [1–6].  The 
advantage of this technique is that it is a general method applicable to any 
projectile.  However, it is the least accurate method of the four methods 
mentioned above, particularly for new configurations that fall outside the realm 
of projectiles used to form the basic aerodynamic database.  The empirical 
method has been found very useful in conceptual design of projectiles where 
rapid and inexpensive estimates of aerodynamic coefficients are needed.  In wind 
tunnel testing, a specific projectile is mounted in a wind tunnel at various angles 
of attack with aerodynamic forces and moments measured at various Mach 
numbers using a sting balance.  Wind tunnel testing has the obvious advantage of 
being based on direct measurement of aerodynamic forces and moments on the 
projectile.  It is also relatively easy to change the wind tunnel model to allow 
detailed parametric effects to be investigated.  The main disadvantage to wind 
tunnel testing is that it requires a wind tunnel and as such is modestly expensive.  
Furthermore, dynamic derivatives such as pitch and roll damping as well as 
Magnus force and moment coefficients are difficult to obtain in a wind tunnel 
and require a complex physical wind tunnel model.  Wind tunnel testing is often 
used during projectile development programs to converge on fine details of the 
aerodynamic design of the shell [7,8].  In computational fluid dynamics (CFD) 
simulation, the fundamental fluid dynamic equations are numerically solved for a 
specific configuration.  The most sophisticated computer codes are capable of 
unsteady time accurate computations using the Navier–Stokes equations.  
Examples of these tools include, for example, CFD++, Fluent, and Overflow-D.  
Over the past couple of decades, tremendous strides have been made in the 
application of CFD to prediction of aerodynamic loads on air vehicles, including 
projectiles.  CFD is based on first principles and does not involve physical 
testing.  It is a general method that is valid for any projectile configuration.   
However, CFD is computationally expensive and requires powerful computers to 
obtain results in a reasonably timely manner [9–22].  In spark range aerodynamic 
testing, a projectile is fired through an enclosed building.  At a discrete number 
of points during the flight of the projectile (< 30) the state of the projectile is 
measured using spark shadowgraphs [23–27].  The projectile state data is 
subsequently fit to a rigid 6 degree-of-freedom projectile model using the 
aerodynamic coefficients as the fitting parameters [28–30].  Spark range 
aerodynamic testing is considered the gold standard for projectile aerodynamic 
coefficient estimation.  It is the most accurate method for obtaining aerodynamic 
data on a specific projectile configuration.  It usually the most expensive 
alternative, requires a spark range facility, and strictly speaking is only valid for 
the specific projectile configuration tested. 
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     Various researchers have used CFD to estimate aerodynamic coefficient 
estimation of projectiles.  Early work focused on Euler solvers applied to steady 
flow problems while more recent work has solved the Reynolds averaged 
Navier–Stokes equations and Large Eddy Simulation Navier Stokes equations 
for both steady and unsteady conditions [9–22].  For example, to predict pitch 
damping Weinacht prescribed projectile motion to mimic a typical pitch 
damping wind tunnel test in a CFD simulation to estimate the different 
components of the pitch damping coefficient of a fin stabilized projectile [31].  
Excellent agreement between computed and measured pitch damping was 
attained.  Algorithm and computing advances have also led to coupling of CFD 
codes to projectile rigid body dynamics codes for simulation of free flight 
motion of a projectile in a time accurate manner.  Aerodynamic forces and 
moments are computed with the computational fluid dynamics solver while the 
free flight motion of the projectile is computed by integrating the rigid body 
dynamic (RBD) equations of motion.  The ability to simulate the flight of a 
projectile using first principles has led to the notion of “virtual fly outs” where 
the simulation tools above are used to replicate a spark range test.  Along these 
lines, Sahu achieved excellent agreement between spark range measurements and 
a coupled CFD/RBD approach for a finned stabilized projectile [32].  Projectile 
position and orientation at down range locations consistent with a spark range 
test were extracted from the output of the CFD/RBD software to compute 
aerodynamic coefficients.  Standard range reduction software was utilized for 
this purpose with good agreement obtained when contrasted against example 
spark range results. 
     While coupled CFD/RBD simulation is now capable of replicating time 
accurate projectile motion, computing time for this type of analysis is 
exceedingly high and does not currently represent a practical method for typical 
flight dynamic analysis such as impact point statistics (CEP) computation where 
thousands of fly outs are required.  Furthermore, this type of analysis does not 
allow the same level of understanding of the inherent underlying dynamics of the 
system that rigid body dynamic analysis using aerodynamic coefficients yields.  
However, the coupled CFD/RBD approach does offer an ideal way to rapidly 
compute the aerodynamic coefficients needed for rigid 6 degree-of-freedom 
simulation.  During a time accurate CFD/RBD simulation, aerodynamic forces 
and moments and the full rigid body state vector of the projectile are generated at 
each time step in the simulation.  This means that aerodynamic forces, 
aerodynamic moments, position of the mass center, body orientation, 
translational velocity, and angular velocity of the projectile are all known at the 
same time instant.  With time synchronized air load and state vector information, 
the aerodynamic coefficients can be estimated with a simple fitting procedure.  
This paper creates a method to efficiently generate a complete aerodynamic 
model for a projectile in atmospheric flight using n  short time histories at m  
different Mach numbers with an industry standard time accurate CFD/RBD 
simulation.  The technique is exercised on example CFD/RBD data for a small 
fin stabilized projectile.  The technique is further exercised for a fin and spin 
stabilized projectile using simulated data from a standard trajectory code.  
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Parametric trade studies investigating the number of time snippets and the length 
of each time snippet to obtain accurate aerodynamic coefficients are reported. 

2 Projectile CFD/RBD simulation 

The projectile CFD/RBD algorithm employed here combines a rigid six degree 
of freedom projectile flight dynamic model with a three dimensional, time 
accurate CFD simulation.  The RBD dynamic equations are integrated forward in 
time where aerodynamic forces and moments that drive motion of the projectile 
are computed using the CFD algorithm.   
     The RBD projectile model allows for 3 translation degrees of freedom and 3 
rotation degrees of freedom.  As shown in Figure 1, the I  frame is attached to 
the ground while the B  frame is fixed to the projectile with the BI  axis 

pointing out the nose of the projectile and the BJ  and BK  unit vectors forming 
a right handed triad.  The projectile state vector is comprised of the inertial 
position components of the projectile mass center ( , ,x y z ), the standard 
aerospace sequence Euler angles ( , ,φ θ ψ ), the body frame components of the 
projectile mass center velocity ( , ,u v w ), and the body frame components of the 
projectile angular velocity vector ( , ,p q r ).  Both the translational and rotational 
dynamic equations are expressed in the projectile body reference frame.  The 
standard rigid projectile, body frame equations of motion are given by Equations 
1 through 4. 
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Note that the total applied force components ( , ,X Y Z ) and moment 
components ( , ,L M N ) contain contributions from weight and aerodynamics.  
The aerodynamic portion of the applied loads in Equations 3 and 4 is computed 
using the CFD simulation and passed to the rigid body dynamic simulation. 
 

 
Figure 1: Reference frame and position definitions. 

     On the other hand, the CFD flow equations are integrated forward in time 
where the motion of the projectile that drives flow dynamics are computed using 
the RBD algorithm.  The complete set of 3-D time-dependent Navier–Stokes 
equations is solved in a time-accurate manner for simulation of free flight.  The 
commercially available code, CFD++17-20, is used for the time-accurate 
unsteady CFD simulations. The basic numerical framework in the code contains 
unified-grid, unified-physics, and unified-computing features.  The 3-D, time-
dependent Reynolds-averaged Navier–Stokes (RANS) equations are solved 
using the following finite volume equation. 
 

 ( )
V V

WdV F G dA HdV
t
∂

+ − =
∂ ∫ ∫ ∫  (5) 

 

where W is the vector of conservative variables, F and G are the inviscid and 
viscous flux vectors, respectively, H is the vector of source terms, V is the cell 
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volume, and A is the surface area of the cell face. A second-order discretization 
is used for the flow variables and the turbulent viscosity equation. The 
turbulence closure is based on topology-parameter-free formulations. Two-
equation higher order RANS turbulence models are used for the computation of 
turbulent flows. These models are ideally suited to unstructured book-keeping 
and massively parallel processing due to their independence from constraints 
related to the placement of boundaries and/or zonal interfaces.     
     A dual time-stepping approach is used to integrate the flow equations to 
achieve the desired time-accuracy.  The first is an “outer” or global (and 
physical) time step that corresponds to the time discretization of the physical 
time variation term. This time step can be chosen directly by the user and is 
typically set to a value to represent 1/100 of the period of oscillation expected or 
forced in the transient flow. It is also applied to every cell and is not spatially 
varying.  An artificial or “inner” or “local” time variation term is added to the 
basic physical equations.  This time step and corresponding “inner-iteration” 
strategy is chosen to help satisfy the physical transient equations to the desired 
degree.  For the inner iterations, the time step is allowed to vary spatially. Also, 
relaxation with multigrid (algebraic) acceleration is employed to reduce the 
residues of the physical transient equations. It is found that an order of 
magnitude reduction in the residues is usually sufficient to produce a good 
transient iteration.  
     The projectile in the coupled CFD/RBD simulation along with its grid moves 
and rotates as the projectile flies downrange.  Grid velocity is assigned to each 
mesh point.  For a spinning and yawing projectile, the grid speeds are assigned 
as if the grid is attached to the projectile and spinning and yawing with it.  
     In order to properly initialize the CFD simulation, two modes of operation for 
the CFD code are utilized, namely, an uncoupled and a coupled mode.  The 
uncoupled mode is used to initialize the CFD flow solution while the coupled 
mode represents the time accurate coupled CFD/RBD solution.  In the uncoupled 
mode, the rigid body dynamics are specified.  The uncoupled mode begins with a 
computation performed in “steady state mode” with the grid velocities prescribed 
to account for the proper initial position ( 0 0 0, ,x y z ), orientation ( 0 0 0, ,φ θ ψ ), 

and translational velocity ( 0 0 0, ,u v w ) components of the complete set of initial 
conditions to be prescribed. After the quasi-steady state solution is converged, 
the initial spin rate ( 0p ) is included and a new quasi-steady state solution is 
obtained.  A sufficient number of time steps are performed so that the angular 
orientation for the spin axis corresponds to the prescribed initial conditions.  This 
steady state flow solution is the starting point for the coupled solution.  For the 
coupled solution, the mesh is translated back to the desired initial position 
( 0 0 0, ,x y z ) and the remaining angular velocity initial conditions ( 0 0,q r ) are 
then added. In the coupled mode, the aerodynamic forces and moments are 
passed to the RBD simulation which propagates the rigid state of the projectile 
forward in time.  
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Figure 2: Projectile orientation definitions. 

3 Flight dynamics projectile aerodynamic model 

The applied loads in Equations 3 and 4 are expressed in the body reference frame 
and split into contributions due to weight and body aerodynamic force as shown 
below. 
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The air loads can be further split into a steady air loads component that acts at 
the center of pressure and a Magnus air loads component that acts at the center of 
Magnus.  The terms containing YPAC  constitute the Magnus air loads component 

while the terms containing 0 2, ,X X NAC C C  define the loads acting at the center 
of pressure.  The externally applied moment about the projectile mass center is 
composed of an unsteady aerodynamic moment along with terms due to the fact 
that the center of pressure and center of Magnus are not located at the mass 
center. 
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The terms involving MAC  accounts for the center of pressure being located off 

the mass center while the terms involving NPAC  accounts for the center of 
Magnus being located off the mass center.  In Equations 1 and 2, the 
aerodynamic coefficients and the distances from the aerodynamic force 
components to the projectile mass center are all a function of local Mach 
number.  Typically in flight dynamic trajectory computer codes, this dependence 
on Mach number is handled through a table look-up scheme. 

4 Aerodynamic coefficient estimation 

The time accurate coupled CFD/RBD simulation provides a full flow solution 
including the aerodynamic portion of the total applied force and moment 
( , , , , ,X Y Z L M N ) along with the full state of the rigid projectile 
( , , , , , , , , , , ,x y z u v w p q rφ θ ψ ) at each time step in the solution.  The rigid 
state of the projectile is used to obtain the weight portion of the applied force so 
that the aerodynamic force can be isolated.  Using the information provided by 
the coupled CFD/RBD simulation, it is desired to compute all aerodynamic 
coefficients: 0 2, , ,X X NA YPAC C C C , , , , ,LDD LP MA MQ NPAC C C C C .  For a fin-
stabilized projectile, the Magnus force and moment are usually sufficiently small 
so that YPAC  and NPAC  are set to zero and removed from the fitting procedure to 
be described below.   
     To estimate the aerodynamic coefficients near a particular Mach number, a 
set of n  time accurate coupled CFD/RBD simulations are created over a 
relatively short time period.  The initial conditions for the set of n  time histories 
are generated to produce a rich database of aerodynamic loads and projectile 
states so that a unique solution can be obtained for the aerodynamic coefficients.  
The initial conditions for the rigid projectile states are Gaussian random numbers 
with a mean and standard deviation selected to cover normal operating 
conditions for the projectile.  Since the aerodynamic coefficients to be estimated 
depend on local Mach number, the set of n  time histories is repeated at m  
different Mach numbers of interest.  Thus a total of *n m  short time accurate 
coupled CFD/RBD trajectories are generated to support computation of a 
complete set of aerodynamic coefficients for flight dynamic simulation.   
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     Since initial conditions for a given set of n  time histories are randomly 
generated and because Mach number changes during a simulation, Mach number 
varies slightly even for a set of time histories intended to be generated at a 
particular Mach number.  Hence, at a particular Mach number, all aerodynamic 
coefficients are assumed to vary linearly with Mach number. Parameters at 
intermediate values of Mach number were linearly interpolated as shown, 
 

 ( )( ) M MC M C C C
M M

−
− + −

+ −

−
= + −

−
 (8) 

 
where C−  and C+  are the aerodynamic coefficient values at Mach numbers 

slightly less than ( M − ) and slightly greatly than ( M + ) the target Mach number.  
This general form for the aerodynamic coefficients is then substituted into the 
aerodynamic force and moment equations.  Note that all aerodynamic 
coefficients that are to be estimated appear in the force and moment equations in 
a linear fashion suggesting a linear least squares approach to estimate the 
aerodynamic coefficients at each Mach number. 
     Define the vectors XP , YZP , LP , and MNP  as vectors containing all the 
unknown aerodynamic coefficients that are to be estimated at a given target 
Mach number. 
 
 0 0 2 2X X X X XP C C C C− + − + =    (9) 

 
 YZ NA NA YPA YPAP C C C C− + − + =    (10) 

 
 L LP LP LDD LDDP C C C C− + − + =    (11) 

 
 MN MA MA MQ MQ NPA NPAP C C C C C C− + − + − + =    (12) 

 
Denote the total number of unknowns as j .  For a fin stabilized projectile, 

14j =  while for a spin stabilized projectile 18j = .  Assuming each time 
history contains k  time simulation output points, then *k n  linear equations in 
j  unknowns are generated at each target Mach number. 

 
 X X XA P B=  (13) 
 
 YZ YZ YZA P B=  (14) 
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 L L LA P B=  (15) 
 

 MN MN MNA P B=  (16) 
 
Provided the matrices XA , YZA , LA , and MNA  are maximal rank, a unique 

solution for XP , YZP , LP , and MNP  exists.  Thus, properties of the matrices 
above, such as the rank or singular values, can be used as an indicator of the 
suitability of the CFD/RBD simulation data in estimating the aerodynamic 
coefficients at the target Mach number.     

5 Results 

In order to exercise the method developed above, a detailed comparison of the 
aerodynamic forces and moments for a typical finned projectile are shown in 
Figures 3–8.  Mach number varied from 3.03 to 2.97, covering 0.07 s and 
containing 3317 points.  The projectile had the following properties: mass of 
4.84x10-1 kg, length of 1.259x10-1 m, diameter of 1.319x10-2 m, and axial inertia 
of 7.4x10-7 kg-m2. The estimated data is generated using Equations 5 and 6 with 
the identified aerodynamic coefficients.  Aerodynamic forces and moments agree 
well, particularly the Y and Z components which appear coincident in the plotted 
data.  The CFD/RBD data appears slightly noisy in both the axial force and 
rolling moment.  However, the estimated data removes the noise. 
     Figures 9–17 present estimation results for an example finned projectile and 
an example spin stabilized projectile.  The finned projectile is a 120 mm direct 
fire kinetic energy round while the spin stabilized projectile is a 155 mm shell.  
Synthetic CFD/RBD data was generated using a rigid 6 DOF trajectory 
simulation.  The solid lines correspond to the coefficient values used to generate 
the synthetic CFD/RBD data.  The “square” symbols represent the finned 
projectile aerodynamic coefficient estimations and the “circle” symbols represent 
the spin stabilized aerodynamic coefficient estimations.  In Figure 14, Cmq 
values for the finned projectile are scaled by a factor of 1/40 so that data for both 
rounds is easily viewed.  The spin stabilized projectile cover a Mach range from 
0.6 to 4, while the finned projectile covers a Mach range from 1 to 4.  One 
thousand output points were used from each of the 25 runs at each Mach number 
of interest.  For the finned projectile, each run had random initial conditions for 
angular rates with a zero mean and a Gaussian standard deviation of 3 rad/s for 
roll rate and 2 rad/s for pitch and yaw rates.  For the spin stabilized projectile, 
each run had random initial conditions for roll rate with a mean value of 900 
rad/s and Gaussian standard deviation of 10 rad/s.  
     Parametric trade studies were conducted to determine the effect of the number 
of runs needed for convergence of the aerodynamic coefficients as well as the 
effect of the length of the time snippet on convergence.  Figures 18–23 present 
results for CX2 and CMQ as a function of the number of runs used for 
estimation.  The number of runs at each Mach number was varied to values of 4, 
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6, and 10.  The number of output points was 1 for all runs.  Note that for 10 runs, 
the aerodynamic coefficients are converged.  The effect of the number of data 
points in each time snippet was also investigated.  Three values were considered: 
1, 2, and 5.  The number of runs at each Mach number is 6 and the snippet length 
equals 0.1 s.  While not shown, all aerodynamic coefficients converged with 5 
data points.   
 

 

Figure 3: Estimated (dashed) and CFD/RBD (solid) body axis axial force 
versus time. 

  

 

Figure 4: Estimated (dashed) and CFD/RBD (solid) body axis side force 
versus time. 
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Figure 5: Estimated (dashed) and CFD/RBD (solid) body axis vertical force 
versus time. 

  
 
 
 

 

Figure 6: Estimated (dashed) and CFD/RBD (solid) body axis rolling 
moment versus time. 
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Figure 7: Estimated (dashed) and CFD/RBD (solid) pitching moment versus 
time. 

 
 
 
 

 

Figure 8: Estimated (dashed) and CFD/RBD (solid) yawing moment versus 
time. 

 

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 45,
 www.witpress.com, ISSN 1743-355X (on-line) 

Computational Ballistics III  43



 
 

 
 

Figure 9: CX0 versus mach number (square = spin stabilized projectile, circle 
= finned projectile; solid line = data, symbols = estimated). 

 
 
 
 

 

Figure 10: CX2 versus Mach number (square = spin stabilized projectile, 
circle = finned projectile; solid line = data, symbols = estimated). 
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Figure 11: CNA versus Mach number (square = spin stabilized projectile, 
circle = finned projectile; solid line = data, symbols = estimated). 

 
 
 
 

 

Figure 12: CLP versus Mach number (square = spin stabilized projectile, 
circle = finned projectile; solid line = data, symbols = estimated). 
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Figure 13: CLDD versus Mach number (square = spin stabilized projectile, 
circle = finned projectile; solid line = data, symbols = estimated). 

 
 
 
 

 
 

Figure 14: CMQ versus Mach number (square = spin stabilized projectile, 
circle = finned projectile; solid line = data, symbols = estimated). 
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Figure 15: Stationline center of pressure versus Mach number (square = spin 
stabilized projectile, circle = finned projectile; solid line = data, 
symbols = estimated). 

 
 
 
 

 

Figure 16: CYPA versus Mach number for spin stabilized projectile (dashed 
line = data, symbols = estimated). 
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Figure 17: Stationline center of Magnus force versus Mach number for spin 
stabilized projectile (solid line = data, symbols = estimated). 

 
 
 
 

 

Figure 18: CX2 versus Mach number: 1 data point per time snippet, 4 time 
snippets. 
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Figure 19: CX2 versus Mach number: 1 data point per time snippet, 6 time 
snippets. 

 
 
 

 

 

Figure 20: CX2 versus Mach number: 1 data point per time snippet, 10 time 
snippets. 
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Figure 21: CMQ versus Mach number: 1 data point per time snippet, 4 time 
snippets. 

 
 
 
 

 

Figure 22: CMQ versus Mach number: 1 data point per time snippet, 6 time 
snippets. 
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Figure 23: CMQ versus Mach number: 1 data point per time snippet, 10 time 
snippets. 

 

Using a time accurate computational fluid dynamics simulation that is tightly 
coupled to a rigid body dynamics simulation, a method to efficiently generate a 
complete aerodynamic description for projectile flight dynamic modeling is 
described.  A set of n  very short time snippets of simulated projectile motion at 
m  different Mach numbers is computed and employed as baseline data.  The 
combined CFD/RBD analysis computes time synchronized air loads and 
projectile state vector information, leading to a straight forward fitting procedure 
to obtain the aerodynamic coefficients.  The estimation procedure decouples into 
4 sub problems that are each solved via linear least squares.  By inspecting the 
condition number of each fitting matrix, the suitability of the time history data to 
predict a selected set of aerodynamic coefficients can be assessed.  The overall 
method has been shown to work well for both fin and spin stabilized projectiles.  
As would be expected, convergence of the aerodynamic coefficients is strongly 
influenced by the number of time snippets and the number of points in each time 
snippet.  This technique provides a new means for the CFD analyst to predict 
aerodynamic coefficients for flight dynamic simulation purposes.  While 
CFD/RBD is computationally intensive, the method described in this paper 
provides a means to monitor progress in estimating aerodynamic coefficients 
through the individual fitting matrices. 

6 Conclusions 

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 45,
 www.witpress.com, ISSN 1743-355X (on-line) 

Computational Ballistics III  51



Nomenclature 

zyx ,, : Components of position vector of mass center in an inertial reference 
frame.  

ψθφ ,, : Euler roll, pitch, and yaw angles of box. 
wvu ,, : Components of velocity vector of mass center in body reference frame. 
rqp ,, : Components of angular velocity vector in body reference frame.  

zyx FFF ,, : Total applied force components in body reference frame. 

zyx MMM ,, : Total applied moment components about mass center in body 
reference frame. 
V : Magnitude of relative aerodynamic velocity vector of mass center. 
ρ : Air density. 
D : Projectile diameter. 
α : Aerodynamic angle of attack. 
Cx0: Zero yaw drag aerodynamic coefficient. 
Cx2: Yaw drag aerodynamic coefficient. 
Cna: Normal force due to angle of attack aerodynamic coefficient. 
Cypa: Magnus force aerodynamic coefficient.  
Clp: Roll damping aerodynamic coefficient. 
Cldd: Fin cant aerodynamic coefficient. 
Cmq: Pitch damping moment aerodynamic coefficient. 
Dcop: Distance from the mass center to the center of pressure. 
Dmag: Distance from the mass center to the center of Magnus. 
CFD: Computational Fluid Dynamics. 
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