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A physical method to alter the trajectory of a projectile is a critical element of any smart weapon. Creation of an

appropriate controlmechanism is often one of themore difficult parts of the overall design due to size, durability, and

control authority requirements. The work reported here considers a vibrating internal mass control mechanism

applicable to both fin- and spin-stabilized configurations. To investigate the potential of this control mechanism, a 7-

degree-of-freedom flight dynamic model of a projectile equipped with an internal translating mass is generated. By

vibrating the internal translating mass normal to the axis of symmetry and at the roll rate frequency, significant

control authority can be attained with a relatively small internal mass on the order of a percent or so of the total

projectile mass. Interestingly, control authority increases proportionally with increasing roll rate and also with

increasing station-line cavity offset from the mass center. Trajectory changes are not caused by lateral mass center

offset and drag but rather by dynamic coupling between internal mass vibration and the projectile body.

Nomenclature

AT = internal translating mass oscillation amplitude
aC=I = translational acceleration vector of the system

center of mass with respect to the inertial frame
aP=I = translational acceleration of the projectile center

of mass with respect to the inertial frame
aT=I = translational acceleration vector of the internal

translating mass center of mass with respect to
the inertial frame

aT=P = translational acceleration of the internal
translating mass with respect to the projectile
reference frame

B = point at center of internal translating mass cavity
C = point at center of mass of composite projectile-

translating mass system
Ci = various projectile aerodynamic coefficients
cV = viscous damping coefficient in the sleeve for the

internal translating mass
D = projectile reference diameter
FC = constraint force on the internal translating mass
FF = frictional force exerted on the internal translating

mass by the cavity wall
FI = input force exerted by controller along translating

mass line of movement
FP = total aerodynamic force exerted on the projectile
finput = scalar value of the input force exerted by the

controller
g = acceleration due to gravity (9:81 m=s2)
HP=I = angular momentum of the projectile with respect

to the inertial frame about the projectile body
mass center

HT=I = angular momentum of the internal translating
mass with respect to the inertial frame about the
internal translating mass center

II , JI , KI = inertial reference frame unit vectors
INR, JNR,
KNR

= no roll reference frame unit vectors

IP = mass moment of inertia matrix of the projectile
body with respect to the projectile reference
frame

IP, JP, KP = projectile reference frame unit vectors
IT = mass moment of inertia matrix of the internal

translating mass with respect to the projectile
reference frame

IT , JT , KT = internal translating mass reference frame unit
vectors

L,M, N = external moment components on the projectile
body expressed in the projectile reference
frame

LB = length of projectile
MJNR = average moment exerted on the composite body

in the JNR direction
MKNR = average moment exerted on the composite body

in the KNR direction
MC = total external moment applied to the system about

the system mass center
m = total system mass
mP = projectile body mass
mT = internal translating mass
P = point at mass center of projectile with cavity
p, q, r = components of the angular velocity vector of the

projectile body expressed in the projectile
reference frame

~p, ~q, ~r = components of the angular velocity vector of the
projectile body expressed in the no roll reference
frame

qa = dynamic pressure at the projectile mass center
rC!P = distance vector from the center of mass of the

system to the projectile center of mass
rC!T = distance vector from the center of mass of the

system to the internal translating mass center of
mass

rP!T = distance vector from the projectile center of
mass to the internal translating mass center of
mass

rPA = cavity offset from the projectile center
of mass
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s = location of the internal translating mass along its
line of movement

scommand = commanded position of the internal translating
mass by the controller

TIP = transformation matrix from the inertial
reference frame to the projectile reference
frame

TNRP = transformation matrix from the projectile
reference frame to the no roll reference
frame

TPT = transformation matrix from the projectile
reference frame to the internal translating mass
reference frame

u, v, w = translation velocity components of the composite
body center of mass resolved in the projectile
reference frame

V = magnitude of mass center velocity
vC=I = velocity of the system mass center with respect to

the inertial frame
vS = magnitude of the velocity of the translating mass

with respect to the translating mass reference
frame

vT=P = velocity of the internal translating mass center of
mass with respect to the projectile reference
frame

WP = weight of the projectile (without the internal
mass)

WT = weight of the internal translating mass
X, Y, Z = total external force components on the composite

body expressed in the fixed plane reference
frame

XT = distance from the center of the internal
translating mass cavity to the system center of
mass

x, y, z = position vector components of the composite
body center of mass expressed in the inertial
reference frame

� = longitudinal aerodynamic angle of attack
�P=I = angular acceleration of the projectile body with

respect to the inertial frame
� = lateral aerodynamic angle of attack
�yS = swerve measured in the JI direction
�zS = swerve measured in the KI direction
�T ,  T = Euler pitch and yaw angles for the orientation

of the line of movement of the internal
translating mass with respect to the projectile
body

� = damping ratio of the feedback linearization
controller

� = density of air
�T = phase angle of projectile swerve at impact
�, �,  = Euler roll, pitch, and yaw angles
�T = phase angle of controller input with respect to

Euler roll angle
!N = natural frequency of the feedback linearization

controller
!P=I = angular velocity of the projectile body with

respect to the inertial frame

I. Introduction

B ECAUSE of the convergence of rugged and small sensors with
equally rugged and small powerful microprocessors, projectiles

are now being designed with full guidance and control capability. A
key component of new guided projectiles is the control mechanism.
The control mechanism must be capable of altering the trajectory of
the projectile in such away that impact point errors induced at launch
and in flight can be corrected. At the same time, the control
mechanism must be rugged to withstand high acceleration loads at
launch, small so that payload space is not compromised, and

inexpensive for cost considerations. There aremany different control
mechanisms being developed with these requirements in mind, but
all concepts essentially fall into three categories: aerodynamic load
mechanisms, jet thrust mechanisms, and inertial load mechanisms.
Examples of aerodynamic control mechanisms include rotation of
aerodynamic lifting surface appendages, deflection of the nose, and
deflection of ram air to side ports. Examples of jet thrust control
mechanisms include gas jet thrusters and explosive thrusters.
Examples of inertial control mechanisms include internal translation
of a control mass and internal rotation of an unbalanced part. Many
conventional uncontrolled projectile configurations contain internal
parts that move slightly in flight such as, for example, submunitions
keyed into place and ball rotor fuses on some indirect fire shells.
These moving internal parts are known to cause significant
alterations in the trajectory of the round. Although seemingly
insignificant from a dynamic modeling perspective, small mass
unbalances in these configurations can induce instability of the round
as a whole typified in flight by a large loss in range and large spin
decay. These observations motivated several investigators to
consider dynamic stability of projectiles with moving internal
components [1]. Soper [2] evaluated the stability of a spinning
projectile that contains a cylindrical mass fitted loosely into a
cylindrical cavity. Using a similar geometric configuration, Murphy
[3] developed a quasi-linear solution for a projectile with an internal
moving part. Later, D’Amico [4] performed a detailed series of
experiments where a projectile with a loose internal part was driven
by the rotor of a freely gimbaled gyroscope. Hodapp [5] expanded
the work of Soper [2] and Murphy [3] by considering a projectile
configuration with a partially restrained internal member with amass
center offset.

The basic idea of usingmoveable internal components as a control
mechanism has been considered for different air vehicle
configurations by several investigators. Petsopoulos et al. [6]
considered employment of a moving mass inside a reentry vehicle to
create a means for roll control. Robinett et al. [7] used internally
moving masses in a plane normal to the axis of symmetry of ballistic
rockets to achieve control while more recently Menon et al. [8]
considered exoatmospheric interception scenarios using three
orthogonal internal translating masses as the control mechanism. An
active control system was developed using a feedback linearization
technique. Frost and Costello [9,10] investigated the ability of an
internal rotatingmass unbalance to actively control both fin and spin-
stabilized projectiles.

The work reported here seeks to harness trajectory alteration
potential of a single vibrating internally translating part aligned in the
lateral direction. This paper begins with a description of a 7-degrees
of freedom flight dynamic model used for trajectory predictions
along with a description of a flight control system to generate control
authority. The dynamic model is subsequently employed to predict
control authority as well as actuator power requirements for an
example projectile. The effects of key physical properties of the
system such as internal mass ratio, spin rate, cavity station-line
location, and aerodynamic properties are examined against swerve
production capability versus actuator power required.

II. Internal Translating Mass Projectile
Dynamic Model

A sketch of the basic projectile configuration is shown in Fig. 1. It
consists of two major components, namely, a main projectile body
and an internal translatingmass. Themain projectile body is largely a
typical projectile with the exception of an internal cavity that hosts an
internal mass. The internal mass is free to translate within the main
projectile cavity. An actuator inside the projectile exerts a force on
the internal mass as well as the main projectile to move the mass
inside the cavity to a desired location.

Four reference frames are used in development of the equations of
motion for the system, namely, the inertial, projectile, no roll, and
translating mass reference frames. The four reference frames are
linked by the following three orthonormal transformation matrices:
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8>><
>>:
IP

JP

KP

9>>=
>>;
�

c�c c�s �s�
s�s�c � c�s s�s�s � c�c s�c�

c�s�c � s�s c�s�s � s�c c�c�

2
664

3
775
8>><
>>:
II

JI

KI

9>>=
>>;

� �TIP�

8>><
>>:
II

JI

KI

9>>=
>>;

(1)

8<
:
IT
JT
KT

9=
;�

c�T c T c�T s T �s�T
�s T c T 0

s�T c T s�T s T c�T

2
4

3
5
8<
:
IP
JP
KP

9=
;� �TPT �

8<
:
IP
JP
KP

9=
;
(2)

8<
:
INR
JNR
KNR

9=
;�

1 0 0

0 c� �s�
0 s� c�

2
4

3
5
8<
:
IP
JP
KP

9=
;� �TNRP�

8<
:
IP
JP
KP

9=
; (3)

The T frame is assumed to be fixed with respect to the P frame, and
therefore the angles T and �T do not changewith time.All equations
in this paper use the following shorthand notation for trigonometric
sine, cosine, and tangent functions: s� � sin�, c� � cos�, and
t� � tan�.

Throughout the development of the equations of motion, several
different position vectors are used. The nomenclature for position
vectors is such that r�!� is defined as the position vector frompoint�
to point �. The position vector of the mass center of the two-body
system with respect to a ground fixed reference frame is written as

r O!C � xII � yJI � zKI (4)

whereas the position of the internal translating mass with respect to
the projectile reference frame is

r C!T � �xT � s�c�T c T ��IP � �s�c�T s T ��JP � �s��s�T ��KP
(5)

The mathematical model describing the motion of the internal
translating mass projectile allows for four translational and three
rotational rigid body degrees of freedom. The translation degrees of
freedom are the three components of the composite bodymass center
position vector �x; y; z� and the position of the internal translating
mass with respect to the projectile body (s). The rotation degrees of
freedom are the Euler roll, pitch, and yaw angles ��; �;  �mentioned
previously.

The vector component operator shown in Eq. (5) outputs a column
vector composed of the components of an input vector in a given
frame. For example, if the position vector from � to � is expressed in
reference frame A as r�!� ��x��IA ��y��JA ��z��KA then
the vector component operator acting on this vector yields

C A�r�!�� �

8<
:
�x��
�y��
�z��

9=
; (6)

Notice that the reference frame is denoted by the subscript on the
operator.

The cross-product operator outputs a skew symmetric matrix
using the components of an input vector in the reference frame
denoted in the subscript. For example, if the position vector from� to
� is expressed in reference frameA as r�!� ��x��IA ��y��JA �
�z��KA then the cross-product operator acting on r�!� expressed in
reference frame A is

S A�r�!�� �
0 ��z�� �y��

�z�� 0 ��x��
��y�� �x�� 0

2
4

3
5 (7)

A. Kinematics

The velocity of the composite body mass center can be described
in the inertial frame or the projectile reference frame:

v C=I � _xII � _yJI � _zKI � uIP � vJP � wKP (8)

The translational kinematic differential equations relate these two
representations of the mass center velocity components:8>><
>>:

_x

_y

_z

9>>=
>>;
�

c�c s�s�c � c�s c�s�c � s�s 
c�s s�s�s � c�c c�s�s � s�c 
�s� s�c� c�c�

2
664

3
775

8>><
>>:
u

v

w

9>>=
>>;

� �TIP�T

8>><
>>:
u

v

w

9>>=
>>;

(9)

The angular velocity of the projectile with respect to the inertial
reference frame can be written in terms of appropriate Euler angle
time derivatives or in terms of projectile frame angular velocity
components:

! P=I � _�IP � _�JN � _ KI � pIP � qJP � rKp (10)

The kinematic relationship between time derivatives of the Euler
angles and projectile reference frame angular velocity components
represents the rotational kinematic differential equations:8<

:
_�
_�
_ 

9=
;�

1 s�t� c�t�
0 c� �s�
0 s�=c� c�=c�

2
4

3
5
8<
:
p
q
r

9=
; (11)

The final kinematic differential equation is the trivial relationship

_s� vS (12)

B. Dynamics

The translational dynamic equations for both the projectile and
internal mass are derived through force balancing. They are given by

mpaP=I �WP � FP � FC � FI � FF (13)

mTaT=I �WT � FC � FI � FF (14)

Fig. 1 The internal moving mass projectile. The cavity is located
behind themass center of the composite system, and the line ofmovement

is along the hollow cavity as shown.
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Also note that the definition of the center ofmass of a the system leads
to

maC=I �mPaP=I �mTaT=I (15)

By adding Eqs. (13) and (14) and noting themass center definition in
Eq. (15), the translational dynamics equation for the system is
formed,

maC=I �WP �WT � FP (16)

Writing Eq. (15) in the projectile reference frame yields

8<
:

_u
_v
_w

9=
;�

8<
:

X
m
Y
m
Z
m

9=
; �

0 �r q
r 0 �p
�q p 0

2
4

3
5
8<
:
u
v
w

9=
; (17)

Another translational dynamic equation is formed from the IT
component of the translating mass equation of motion shown in
Eq. (13). The well-known formula for one point moving on a rigid
body yields [9]

aT=I � aP=I � aT=P � ��P=I � rP!T� � 2�!P=I � vT=P�
� �!P=I � �!P=I � rP!T�� (18)

The mass center definition allows a substitution for aP=I, yielding

aT=I � aC=I �
mP

m
�aT=P � ��P=I � rP!T� � 2�!P=I � vT=P�

� �!P=I � �!P=I � rP!T��� (19)

Multiplying through by mT ,

mTaT=I �mTaC=I �
mPmT

m
�aT=P � ��P=I � rP!T�

� 2�!P=I � vT=P� � �!P=I � �!P=I � rP!T��� (20)

Notice also that the constraint force along IT is zero because motion
along this axis is permitted in the model. The translating mass
equation of motion is therefore

mTaC=I �
mPmT

m
�aT=P � ��P=I � rP!T� � 2�!P=I � vT=P�

� �!P=I � �!P=I � rP!T��� �WT � FC � FI � FF (21)

Extracting the IT component of this equation is accomplished by
taking the inner product of the equationwith IT . Notice the following
simplifications:

I T 	 FC � 0 (22)

I T 	 �!P=I � vT=P� � 0 (23)

I T 	 aT=P � �s (24)

I T 	 FI � finput (25)

I T 	 FF ��cV _s (26)

In component form, this equation of motion is written as

�AS1 AS2 AS3 �

8>>>>>>>><
>>>>>>>>:

_u
_v
_w
�s
_p
_q
_r

9>>>>>>>>=
>>>>>>>>;
� fBSg (27)

where

AS1 �mT �c�T c T ; c�T s T ;�s�T � (28)

AS2 �
mPmT

m
(29)

AS3 ��
mPmT

m
�c�T c T ; c�T s T ;�s�T �SP�rP!T� (30)

BS � finput � cV _s�mTg��s�c�T c T � s�c�c�T s T � c�c�s�T �
�mT �c�T c T ; c�T s T ;�s�T �SP�!P=I�CP�vC=I�

�mPmT

m
�c�T c T ; c�T s T ;�s�T �SP�!P=I�SP�!P=I�CP�rP!T�

(31)

The rotation kinetic differential equations are obtained by
equating the I frame time rate of change of the system angular
momentum about the systemmass center to the total applied external
moments to the system about the system mass center,

IdHP
P=I

dt
�

IdHT
T=I

dt
�mPrC!P � aP=I �mTrC!T � aT=I �MC

(32)

Expressed in the projectile reference frame, the components of this
equation are

ARR

8<
:

_p
_q
_r

9=
;� ARSf�sg � fBRg (33)

where

ARR � IP � IT �
mT

mP

mSP�rC!T�SP�rC!T� (34)

ARS �mTSP�rC!T��TPT �T (35)

BR�

8><
>:
MX

MY

MZ

9>=
>;� SP�!P=I�

�
IP� IT �

mT

mP

mSP�rC!T�SP�rC!T�
�

�CP�!P=I� � 2mTSP�rC!T�SP�!P=I��TPT �T

8><
>:

_s

0

0

9>=
>; (36)

The dynamic equations of motion for the internal translating mass
projectile are collectively given byEqs. (9), (11), (12), (27), and (33).
With a known set of initial conditions for the projectile, these 14
scalar equations are numerically integrated forward in time using a
fourth-order Runge–Kutta algorithm to obtain a single trajectory.
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C. Projectile Applied Forces and Moments

In the equations developed above, applied loads drive the motion
of the projectile. The total applied force on the system is given by8<

:
X
Y
Z

9=
;�

8<
:
XP
YP
ZP

9=
;�

8<
:
XT
YT
ZT

9=
; (37)

Only expressions for the applied loads on the projectile are shown.
The weight force on the translating mass is similar to the projectile
with obvious changes:8<

:
XP
YP
ZP

9=
;�

8<
:
XWP
YWP
ZWP

9=
;�

8<
:
XAP
YAP
ZAP

9=
;�

8<
:
XIP
YIP
ZIP

9=
; (38)

8<
:
LP
MP

NP

9=
;�

8<
:
LAP
MA
P

NAP

9=
;�

8<
:
LIP
MI
P

NIP

9=
; (39)

The next several sections detail the different terms in the above
equation. The control forces and moments are computed within the
control system, which is described later, hence expressions are not
provided here.

1. Weight Force

The projectile weight force expressed in the projectile frame is8<
:
XWP
YWP
ZWP

9=
;�mPg

8<
:
�s�
s�c�
c�c�

9=
; (40)

2. Body Aerodynamic Forces and Moments

The aerodynamic forces on the projectile are split into standard
steady (SA) and Magnus (MA) terms. The Magnus forces act at the
Magnus center of pressure, which is different from the center of
pressure of the steady aerodynamic forces:8<

:
XAP
YAP
ZAP

9=
;�

8<
:
XSA
P

YSA
P

ZSA
P

9=
;�

8<
:
XMA
P

YMA
P

ZMA
P

9=
; (41)

where

XSA
P ��

�

8
�V2D2�CX0 � CX2"2� (42)

YSA
P ��

�

8
�V2D2

�
CNA

v

V

�
(43)

ZSA
P ��

�

8
�V2D2

�
CNA

w

V

�
(44)

XMA
P � 0 (45)

YMA
P �

�

8
�V2D2

pD

2V

�
CYPA

w

V

�
(46)

ZMA
P ��

�

8
�V2D2

pD

2V

�
CYPA

v

V

�
(47)

The total applied body moments contain steady (SA), unsteady
(UA), and Magnus (MA) terms:

8<
:
LAP
MA
P

NAP

9=
;�

8<
:
LSA
P

MSA
P

NSA
P

9=
;�

8<
:
LUA
P

MUA
P

NUA
P

9=
;�

8<
:
LMA
P

MMA
P

NMA
P

9=
; (48)

The steady body aerodynamic moment is computed with a cross
product between the distance vector from the center of gravity (c.g.)
to the center of pressure and the steady body aerodynamic force
vector above. Likewise, the Magnus aerodynamic moment is
computed with a cross product between the distance vector from the
center of mass to the center of Magnus force and the Magnus force
vector.

The unsteady body aerodynamic moment provides a damping
source for projectile angular motion

LUA
P �

�

8
�V2D3

�
CLDD �

pD

2V
CLP

�
(49)

MUA
P �

�

8
�V2D3

�
qD

2V
CMQ

�
(50)

NUA
P �

�

8
�V2D3

�
rD

2V
CMQ

�
(51)

The above equations use the following intermediate expressions:

"�
�����������������
v2 �w2
p
����������������������������
u2 � v2 � w2
p (52)

The aerodynamic coefficients and aerodynamic center distances are
all a function of the local Mach number at the center of mass of the
projectile. Computationally, these Mach number dependent
parameters are obtained by a table look-up scheme using linear
interpolation.

III. Results

A. Description of Projectile

The projectile used in this simulation is a representative direct fire
fin-stabilized projectile with diameter of 0.0879 ft. The projectile
mass, mass center measured along the station line, roll inertia, and
pitch inertia are 0.344 slugs, 1.38 ft, 0:0002387 slug-ft2, and
0:1771784 slug-ft2, respectively. Unless otherwise specified, the
ratio of the internal translating mass to the projectile mass and the
cavity distance from the composite c.g. along the body x axis is 1.3%
and 0.8995 ft, respectively. The line of movement of the internal
translating mass is along the JP axis of the projectile. The viscous
damping coefficient for the cavity sleeve is 0:01 lbs-s=ft. In all the
following cases, the projectile is traveling through a standard
atmosphere without atmospheric wind. A schematic of the example
projectile is shown in Fig. 2.

B. Description of Controller

To examine the amount of trajectory deflection with this control
mechanism, a control law is created to move the internal mass in a
prescribed manner. The control force exerted on the internal
translating mass is generated by a feedback linearization controller
[10] which assumes full state feedback. The equation used to
compute the control force is

finput �
mPmT

m
�s� cV _s� � �mT��s� �scommand�

� 2mT�!n�_s � _scommand� �mT!
2
n�s � scommand� (53)

Fig. 2 Schematic of example 57-mm projectile.
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where � represents the remaining terms of the internal translating
mass translational dynamic equation presented in Eq. (26). In all of
the following cases, the control parameters, � and!n, are given by 1.0
and 107 rad=s, respectively.

C. Example Simulation

The internal movingmass projectile dynamicmodelwas validated
against a 6-degree-of-freedom simulation. Three simulations were
run. The first was a nominal 6-degree-of-freedom trajectory of the
projectile without the moving mass (“6DOF”). The second was a 7-
degree-of-freedom trajectory with the moving mass, where the
controller kept the moving mass in the center of the cavity (“7DOF
centered”). The third (“7DOF oscillated”) was a 7-degree-of-
freedom trajectory with the moving mass, where the controller
oscillated the mass exactly at the roll frequency according to

scommand � AT cos��� �T� (54)

where AT � 0:043 ft and �T � 0. Note that the phase angle �T
determines the plane in the inertial frame inwhich themass oscillates
and therefore the direction in which swerve occurs. Figure 3
describes the motion of the internal translating mass at various
intervals along one roll cycle for the mass-oscillated case for �T � 0.

In all cases, the projectile initial conditions were as follows:
x� 0:0 ft, y� 0:0 ft, z� 0:0 ft, �� 90:0 deg, �� 0:573 deg,
 � 0:0 deg, u� 5679 ft=s, v� 0:0 ft=s, w� 0:0 ft=s, p�
380 rad=s, q� 0:0 rad=s, and r� 0:0 rad=s. In the 7DOF cases,
the initial internal translating mass position and velocity was 0.0 ft
and 0:0 ft=s, respectively, and the viscous damping coefficient of the
cavity was 0:01 lbs-s=ft. Also, the moving mass was 1.3% of the
projectile mass, and the cavity was placed 0.8995 ft behind the center
of gravity. As demonstrated in Figs. 4–15, the trajectories for the
6DOF and mass-centered case match almost exactly, providing a
validation that the 7DOFmodel reduces to the 6DOFmodelwhen the

Fig. 3 Movingmass position, velocity (v), and acceleration (a) over one
roll cycle for �T � 0. Mass motion is sinusoidal and has the same

frequency as the projectile roll rate.

Fig. 4 Range vs time.

Fig. 5 Cross range vs time.

Fig. 6 Altitude vs time. Swerve in theKI directionwith�T � 0 is an off-
axis response of the spinning projectile.

Fig. 7 Body pitch attitude vs time.
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internal mass is held fixed. Also, note that by vibrating the internal
mass at the roll frequency significant cross range is created.

Average power required over the trajectory for themass-oscillated
case was 0.6082 Hp, and maximum power required was 1.0071 Hp.
The magnitude of the power required and the force exerted by
the controller decreased slightly corresponding with the
slight decrease in projectile roll rate over the mass-oscillated
trajectory.

D. Control Authority Analysis

Several trade studies were run to examine the control authority of
the moving mass projectile. In all of the following trade studies,
shown in Figs. 17–28, the projectile initial conditions were as
follows: x� 0:0 ft, y� 0:0 ft, z� 0:0 ft, �� 90:0 deg,
�� 0:0 deg,  � 0:0 deg, u� 5679 ft=s, v� 0:0 ft=s, w�
0:0 ft=s, q� 0:0 rad=s, and r� 0:0 rad=s. Total swerve values
are reported at a range of 5000 ft for all trade studies shown.

Figure 16 shows total swerve as a function of the frequency of
internal mass oscillation. Swerve is maximized when the input
frequency of the internal mass is locked to the spin rate of the
projectile. Furthermore, although not shown on a plot, swerve caused
by holding the mass at the end of the cavity with spin rate set to zero

Fig. 8 Yaw angle vs time.

Fig. 9 u vs time.

Fig. 10 p vs time.

Fig. 11 Angle of attack vs time. This figure demonstrates that the net

moment over each spin revolution caused by internal translating mass
motion causes angle of attack perturbations, which in turn lead to

swerve. These angle of attack variations contrast sharply with the

relatively steady angle of attack of the 6DOF trajectory.

Fig. 12 Translating mass position vs time for nine roll cycles.
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yields nearly negligible swerve leading to the conclusion that this
control mechanism is not driven by a drag-induced moment from
mass center offset but rather by a dynamic coupling between the
projectile body and the internal mass. This coupling leads to angular
perturbations to the projectile, which leads to aerodynamic angle of
attack, which leads to normal force and subsequent swerve.

Based on the observation that maximum swerve can be achieved
by locking the input frequency of themass oscillation to the projectile
roll rate, the average control moment for spin revolution can be
obtained analytically. Assuming the translating mass oscillates
according to

s� AT cos��� �T� (55)

and that the cavity is aligned with the JP axis, the moment equation
given in Eq. (32) can be solved to find the approximate average
control moment in the JNR and KNR directions,

Fig. 13 Translating mass velocity vs time for nine roll cycles.

Fig. 14 Force vs time for the mass-oscillated case for the nine roll

cycles.

Fig. 15 Power vs time for the mass-oscillated case for the selected time

interval.

Fig. 16 Input frequency vs swerve for the spinning projectile. Total
swerve ismeasured over 5000 ft.Harmonics of the roll frequency showno

swerve response. It should be noted that control authority suffers in the

above cases due to the fact that the mass oscillation frequency is not

locked to the spin. Furthermore, projectile spin decays over 5000 ft and
therefore the peak is around the initial roll rate of 380 rad=s is slightly
spread.

Fig. 17 Total swerve vs projectile roll rate for various cavity offsets

(rPA). An increased offset from the cavity to the c.g. results in greater

control authority.When the cavity is placed at the c.g., less swerve results
as would be predicted.
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The above expressions demonstrate there is a net control moment
dependent on all angular velocities as well as mass oscillation
amplitude, the cavity offset, and the internal translating mass size.

Increasing the cavity distance from the projectile center of gravity,
depicted as rPA in Fig. 1, serves to increase control authority. In the

following trade study, rPA was varied between 0 and 0.9 ft behind the
c.g., where the case of 0-ft offset represents a cavity at the projectile
c.g. The mass was oscillated at the corresponding roll frequency.
Also, note that the phase angle of the swerve is defined at the impact
point as

�I � tan�1
�
�zS
�yS

�
(58)

An interesting aspect of this result is that more control authority
can be gained from a cavity farther from the c.g. at a lower spin rate.
This provides a way to increase control authority without the
prohibitive increases in force and power required resulting from high
spin rates.

The mass ratio of the internal translating mass to the projectile
mass also has a significant effect on control authority. A larger mass
ratio gives rise to more dynamic coupling between the mass
oscillation and the body roll rate. Figure 21 shows that, for equivalent
roll rates, a heavier internal mass produces noticeable improvements
in control authority. The following trade study considers the
projectile with rPA � 0:8995 ft and a variable mass ratio.

Although increased mass percentage increases the control
performance, the heaviermass requires higher power consumption to
oscillate the mass, especially at increased roll rates.

Fig. 18 Maximum power required vs projectile roll rate for various

cavity offsets.

Fig. 19 Maximum angle of attack vs projectile roll rate for various

cavity offsets.

Fig. 20 Phase angle of swerve vs projectile roll rate for various cavity

offsets.

Fig. 21 Maximum power required vs projectile roll rate for various

mass sizes.
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Fig. 22 Swerve vs projectile roll rate for variousmass sizes. A 1%mass

ratio signifies that the internal translating mass is 1% of the mass of the
projectile without the cavity.

Fig. 24 Phase angle of swerve vs projectile roll rate for various mass

sizes.

Fig. 25 Swerve vs projectile roll rate for reduced-stability projectile.

Fig. 26 Maximum power required vs projectile roll rate for reduced-

stability projectile.

Fig. 27 Maximum angle of attack vs projectile roll rate for reduced-

stability projectile.

Fig. 23 Maximum angle of attack vs projectile roll rate for various
mass sizes.
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A trade study examined the control authority in response to
reduced static stability of the projectile. The nominal projectile is
statically stable with a static margin of approximately 0.49 ft.
Decreasing the magnitude of the static margin caused increased
control authority, although at low spin rates some reduced-stability
rounds experienced excessively high angles of attack. The following
trade study considered a projectilewith variable staticmargin, a 1.0%
mass ratio, and rPA � 0:8995 ft.

IV. Conclusions

The results presented here demonstrate that the internal translating
mass mechanism can produce significant control authority for smart
weapons applications. The projectile swerve is caused not by drag
effects due to an offset center of gravity, but rather by dynamic
coupling between the oscillating mass and projectile spin. These

conclusions were drawn from an exhaustive set of dynamic
simulations that employ a 7-degree-of-freedom model which
includes motion of the projectile and internal mass. Parametric trade
studies show that control authority can be significantly increased
with increased roll rate, increased internal mass, increased cavity
offset distance, and reduced static margin. Actuator force and power
requirements increase as roll rate and internal mass increases but are
insensitive to changes in cavity offset distance and projectile static
margin.
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