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The nexus of advanced manufacturing methods, computer-aided design tools, and modern structural-analysis

software has enabled the design and fabrication of structurally complex wing structures with unique features. This is

particularly true for small unmanned aircraft, in which discrete structural hinges can easily be integrated into the

overall vehicle design. This paper examines the use of discrete structural hinges for tailoring the low-frequency flight

dynamics of the vehicle. For sufficiently soft discrete structural hinges, substantial couplingbetween flexible and rigid

modes occurs, leading to the potential to modify the flight dynamic behavior through structural flexibility. Using a

multibody flight dynamics simulation tool with a nonlinear lifting-line aerodynamic representation, different

structural-hinge elastic properties, orientation, and location on the aircraft are examined. The results for a small

unmanned aircraft indicate that flexibility mostly affects the longitudinal modes and associated handling qualities of

the vehicle. Changes in the short-period and phugoid modes due to flexibility caused by a set of discrete structural

hinges are often antagonistic. A structural-hinge stiffness above a certain critical value tends to improve short-period

flying qualities; below this value, the short-period flying qualities degrade. In addition to the stiffness characteristics

of the discrete structural hinge, orientation of the hinge has a significant effect on flight dynamics. Orienting the

structural hinge to produce pitch–flap coupling can triple the short-period-mode damping, which could improve a

nominally Level 3 rated aircraft to a Level 1 rated aircraft.

Nomenclature

�αP∕Q = angular acceleration of body P with respect to
reference frame Q, rad∕s2

�a�B∕I = acceleration of center of gravity of bodyBwith
respect to inertial reference frame, m∕s2

CB = component operator in generic reference
frame B

CL, CD = lift coefficient, drag coefficient [nd]
Cl, Cm, Cn = roll, pitch, yaw aerodynamic moment co-

efficients in fuselage body reference frame
[nd]

CL0
, CD0

= lift coefficient, drag coefficient at zero angle of
attack [nd]

CLs , CYs , CDs = lift, side force, drag aerodynamic force
coefficient derivatives with respect to variable
s [nd]

Cls ,Cms , Cns = roll, pitch, yaw aerodynamic moment co-
efficient derivatives with respect to variable
s [nd]

CX, CY , CZ = aerodynamic force coefficients in the fuselage
body reference frame [nd]

FLH, FRH = left-hinge, right-hinge joint constraint forces, N
g = acceleration due to gravity, m∕s2
�H�B∕I = angular momentum about center of gravity of

bodyBwith respect to inertial reference frame,
kg · m2∕s

I = mass moment of inertia matrix, kg · m2

�IF, �JF, �KF = basis vectors for fuselage body reference frame
�II , �JI , �KI = basis vectors for inertial reference frame

�IL, �JL, �KL = basis vectors for left-wing body reference
frame

�ILF, �JLF, �KLF = basis vectors for left-fuselage-hinge joint
reference frame

�ILH, �JLH, �KLH = basis vectors for left-hinge-wing joint
reference frame

MLH,MRH = left-hinge, right-hinge joint constraint mo-
ments, N · m

m = mass, kg
p, q, r = angular-velocity measure numbers in body

reference frame, rad∕s
Qd �P∕dt = time derivative of vector P with respect to the

Q reference frame
�rLH→�L = position vector from left-hinge position to left-

wing center of gravity, m
�rO→�F = positionvector fromorigin of inertial reference

frame to center of gravity of fuselage, m
�r�F→LH = position vector from center of gravity of

fuselage to left-hinge position, m
SB = skew symmetric cross-product operator in

generic reference frame B
Sω = skew symmetric cross-product operator acting

on angular rates
u, v, w = velocity-vector measure numbers in body

reference frame, m∕s
ui, vi, wi = components of induced velocity vector, m∕s
u∞, v∞, w∞ = components of freestream velocity vector,m∕s
�V�B∕I = velocity of center of gravity of body B with

respect to inertial reference frame, m∕s
�V∞, V∞ = freestream velocity vector, magnitude of

freestream velocity vector, m∕s
x, y, z = position-vector measure numbers in inertial

reference frame, m
α, β = angle of attack, sideslip angle, rad
βL, βR = left-wing, right-wing flap angle about the

hinge axis, rad
Γ = dihedral angle, rad
Γp = circulation strength of panel horseshoe vortex,

m2∕s
δLE, δRE, δR = left-elevon deflection, right-elevon deflection,

rudder deflection, rad
�ε = downwash, or induced velocity, vector, m∕s
ζ = damping ratio, [nd]
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ρ∞ = freestream density, kg∕m3

ϕ, θ, ψ = Euler angle rotation parameters, rad
ωn = natural frequency, rad∕s
�ωP∕Q = angular velocity of body P with respect to

reference frame Q, rad∕s

Subscripts

F = fuselage body
L = left-wing body
R = right-wing body
� = center of gravity

I. Introduction

A DVANCES in manufacturing methods now allow complex
multimaterial structures to be constructed cost effectively [1–3].

These new manufacturing techniques make it possible to create
discrete joints of compliant material with particular desirable
stiffness and damping characteristics incorporated into a larger, rigid
structure. This is especially practical in the fabrication of micro- and
small-unmanned-aircraft systems [4–6]. Introducing flexibility into
the wing of a small unmanned aircraft via a chordwise discrete
revolute hinge can be used to alter the dynamics of the aircraft. This
includes the low-frequency flight dynamic modes, such as the short-
period, phugoid, roll, Dutch roll, and spiral modes.
A discrete structural hinge can be used as a design tool to shape the

flight dynamic characteristics much like wing dihedral, twist, etc., is
used. Numerous authors have considered wing flexibility in the
context of flight dynamics. Passive articulation systems on aircraft
have been shown to reduce gust sensitivity [7,8]. Porter and Brown
[9] studied aircraft equippedwith a freewing,which allowed pitching
about a spanwise axis ahead of the aerodynamic center of the wing.
They found that such a wing reduced disturbances from gusts and
improved handling qualities [9]. Birds and insects are known to
exploit the compliancy in their joints to achieve desirable wing
motion, which reduces energy consumption [2,10,11]. Krus [11]
showed how flexible spanwise hinges or chordwise compliant joints
with swept joint axes stabilize tailless birdlike aircraft. Rotorcraft
have long used such a hinge, denoted as a δ3 hinge, for pitch–flap
coupling of blades to reduce the pitch of the blade as it flaps [12]. As
far back as 1928, Waterman [13] proposed an aircraft with hinged
wings with δ3 orientations that would reduce the incidence angle as
the wing flapped due to wind gusts and heavy turbulence. The wings
were connected to the fuselage by a pneumatic system that would
act both as a shock absorber and as ameans to set the configuration of
thewings for different phases of flight [13]. Aeroelastic tailoring uses
the plies in composite structures to angle the bending axis forward or
aft, similar to δ3 orientations, to introduce cross-coupling between
bending and twisting of the structure. This produceswash-in orwash-
out on the wing, which can be used to passively control flutter onset,
divergence, induced drag, lift effectiveness, control effectiveness,
and/or maneuver load relief [14,15]. Pitt conducted static and
dynamic aeroelastic design studies using a physical, elastic δ3 hinge
of various orientations and stiffnesses to createwash-in andwash-out
that affected flutter characteristics and divergence speeds similar to
aeroelastic tailoring with composites [16].
Ameri et al. conducted a study of the dynamic response of a flying

wing with articulated winglets and showed how dynamic modes
change as the vehicle is trimmed through varying symmetric dihedral
angles for two winglet sizes [17]. A series of papers by Abdulrahim
and Lind [18–20] investigated symmetric variable gull-wing
morphing in simulation and flight tests. Thevariable gull wing is used
as a slow control effector to deform between flight modes and to
change the glide ratio, climb performance, and stall characteristics.
The effect of different gull angles on the dynamic modes of the
vehicle is also shown [18–20]. A gull-wing aircraft with a hinge to
control the outboard wing sweep used the change in wing sweep to
vary the static margin and longitudinal handling qualities [21].
Paranjape et al. used bifurcation analysis to investigate symmetric

and asymmetric dihedral on an articulated wing aircraft, and the
effect on stability [22].
In a subsequent paper, Paranjape et al. extended this work to an

articulated aircraft with flexible wings and found that moderately
flexible wings with a Young’s modulus on the order of magnitude of
10 and higher did not substantially affect the stability of the vehicle in
coordinated turning flight, although highly flexible wings could
improve turning performance [23]. Babcock and Lind [24] studied
how changes in bending stiffness and torsional stiffness of a flexible
wing on a micro air vehicle affect the rigid-body modes. They
discovered that the torsional stiffness had little effect on rigid-body
modes, but the bending stiffness caused large changes in dihedral and
the state of the vehicle in trim, significantly affecting the lateral
modes of the vehicle [24]. Numerous other studies have investigated
the coupling between rigid-body modes and structural modes
brought on by flexible wings and methods for approximating the
changes in rigid-body dynamics from this coupling [25–31]. Several
studies tie these changes in the rigid modes from flexibility to
changes in the handling qualities, showing that highly elastic
airframes have degraded flying qualities compared to their rigid
counterparts [32–34].
This paper builds on the previous work on the stability of

articulated wing aircraft and flexible aircraft. Unlike the current
literature on flexible aircraft wherein the entire wing is assumed to be
elastic, this work focuses on wing articulation provided by a discrete
compliant hinge formed by new multimaterial fabrication processes.
Changes in traditional rigid-body dynamic modes of the vehicle are
examined as a function of stiffness and damping of discrete structural
hinges. Rather than allowing the wings to displace to their natural
equilibrium dihedral in different flight conditions, the dihedral angle
is forced to be equivalent in all cases to isolate the effects of hinge
properties on the flight dynamics of the vehicle. The effect of δ3 hinge
orientations (pitch–flap coupling) is extended to fixed-wing aircraft
stability analysis, and a δ2 hinge orientation (sweep–flap coupling) is
also introduced. The hinge location, either where it connects the root
of thewing to the fuselage or its location spanwise on thewing, is also
considered. The sensitivity of flight dynamicmodes to changes in the
elastic configuration is examined via static aeroelastic analysis. Also,
changes in the dynamics of the vehicle are correlated to handling-
qualities ratings to show how the design parameters of a flexible
hinge can be used to tailor the flying qualities of the vehicle. Example
results are shown for a nominal small unmanned aircraft.

II. Simulation Methodology

A compliant hinge embedded in a wing structure through
multimaterial fabrication permits the wing to articulate relative to the
fuselage through large, time-varying angles. As such, prediction of
the performance of this physical mechanism requires a multibody
simulation to incorporate the dynamics of this relative motion.

A. Aircraft Geometry

Each wing is attached to the fuselage with a revolute joint, adding
one degree of freedom (DOF) perwing to the standard six-DOF rigid-
body aircraft model. The system is composed of three bodies
(fuselage, left wing, and right wing) with a total of eight DOF. Each
body has a body reference frame with the origin located at the body
center of gravity (c.g.). A frame aligned with the joint is also defined
at the joint on each body. A schematic of the dynamic system is
depicted in Fig. 1. The transformation between the inertial frame and
the body frame of the fuselage is given in Eq. (1). Euler angles are
used for this transformation matrix, Eq. (2). Equations (3–5) define
the rotations between the body frames of the system. The rotation
matrix TβL is the rotation through the flap angle, βL, of the wing
relative to the fuselage about the joint axis, given in Eq. (6).8<

:
�IF
�JF
�KF

9=
; � �TFI �

8<
:

�II
�JI
�KI

9=
; (1)
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�TFI � �

2
4 cos θ cos ψ cos θ sin ψ − sin θ

sin ϕ sin θ cos ψ − cosϕ sinψ sin ϕ sin θ sin ψ � cos ϕ cos ψ sin ϕ cos θ
cos ϕ sin θ cos ψ � sin ϕ sin ψ cos ϕ sin θ sin ψ − sin ϕ cos ψ cos ϕ cos θ

3
5 (2)

8<
:

�ILF
�JLF
�KLF

9=
; � �TLF�

8<
:

�IF
�JF
�KF

9=
; (3)

8<
:

�ILH
�JLH
�KLH

9=
; � �TβL �

8<
:

�ILF
�JLF
�KLF

9=
; (4)

8<
:

�IL
�JL
�KL

9=
; � �TLH�T

8<
:

�ILH
�JLH
�KLH

9=
; (5)

�TβL � �

2
4 1 0 0

0 cos�βL� sin�βL�
0 − sin�βL� cos�βL�

3
5 (6)

Equation (7) defines the complete transformation matrix, TL, from
the fuselage body frame to the left-wing body frame. Figure 2 depicts
the relations between all of the reference frames and transformations
between them. The rotation angles between frames are noted above
the arrows connecting the frames, and the transformation matrix
designations are noted below the arrows in the figure.

TL � TTLHTβLTLF (7)

The state vectorX of the system is given in Eq. (8). Definitions for
these state variables follow in Eqs. (9–11). The position, attitude,
velocity, and angular-velocity variables are defined for the fuselage
body c.g. In addition, the variables βL and βR are the flap rotations
about the joint axis for the left and right wings, respectively.

X��x y z ϕ θ ψ uF vF wF pF qF rF βL _βL βR _βR �T (8)

�rO→�F � x �II � y �JI � z �KI (9)

�V�F∕I � uF �IF � vF �JF �wF �KF (10)

�ωF∕I � pF �IF � qF �JF � rF �KF (11)

B. Kinematic Equations of Motion

The eight-DOF simulation model uses the body-frame
components of the fuselage mass-center velocity and angular-
velocity vectors rather than inertial-frame measure numbers. The
position states are defined in the inertial frame. Kinematic differential
equations relate the time derivatives of “position” coordinates to
“velocity” coordinates. The kinematic differential equations relating
time derivatives of the mass-center position-vector components with
themass-center velocity in the body frame are provided inEq. (12). In
a similar manner, time derivatives of the Euler orientation angles are
related to the body-frame angular velocities through Eq. (13).8<

:
_x
_y
_z

9=
; � �TFI �T

8<
:
uF
vF
wF

9=
; (12)

8<
:

_ϕ
_θ
_ψ

9=
; �

"
1 sin ϕ tan θ cos ϕ tan θ
0 cos ϕ − sin ϕ
0 sin ϕ sec θ cos ϕ sec θ

#(
pF
qF
rF

)
(13)

C. Dynamic Equations of Motion

Using aNewton–Euler approach to form the dynamic equations of
motion, the translational and rotational dynamic equations of motion
are developed for each of the three bodies (fuselage, left wing, and
right wing) separately. The Newton–Euler translational dynamic
equations of motion for a general body B are provided in Eq. (14).
Likewise, the general body rotational dynamic equations are
provided in Eq. (15). For the fuselage body, the vector-derivative
transport theorem is used to determine the acceleration and angular
momentum in the body frame, Eqs. (15) and (16), respectively. The
superscript in front of a derivative term denotes the reference frame.
Forces on the fuselage include weight, aerodynamics, propulsive
thrust, and joint constraints. Moments on the fuselage about its
c.g. include aerodynamics, propulsive torque, elastic stiffness and
damping, and joint constraints.

Fig. 1 Articulated wing aircraft model.

Fig. 2 Frames involved in simulation with rotation angles and transfor-
mation matrices between them.
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mB �a�B∕I � �F (14)

Id �H�B∕I
dt

� �M� (15)

�a�F∕I �
Id �V�F∕I

dt
�

Fd �V�F∕I
dt

� �ωF∕I × �V�F∕I

�

8><
>:

_uF

_vF

_wF

9>=
>;�

8><
>:
pF

qF

rF

9>=
>; ×

8><
>:
uF

vF

wF

9>=
>; (16)

Id �H�F∕I
dt

�
Fd �H�F∕I

dt
� �ωF∕I × �H�F∕I

� IF

8><
>:

_pF

_qF

_rF

9>=
>;�

8><
>:
pF

qF

rF

9>=
>; × IF

8><
>:
pF

qF

rF

9>=
>; (17)

For the wing equations of motion, all velocity, angular-velocity,
acceleration, and angular-acceleration terms are written in terms of
the state variables, rather than each body’s individual velocity and
acceleration terms. To obtain the acceleration of the wing c.g., the
kinematic relationship of the accelerations of two points fixed on a
rigid body is applied to thewing, Eq. (18), and the fuselage, Eq. (19).
Shorthand for position, velocity, and angular-velocity components is
introduced in Eqs. (20–24). The components of acceleration of the
wing c.g. are written in the wing body frame, so terms in the fuselage
body frame are transformed using thematrix relating the fuselage and
wing frames, given in Eq. (7). Using that transformation along with
the defined shorthand notation and substituting Eq. (19) into Eq. (18),
the components of acceleration of the wing are provided in Eq. (25).
The right-wing equations follow analogously to the left-wing
equations given.

�a�L∕I � �aLH∕I � �ωL∕I × �ωL∕I × �rLH→�L � �αL∕I × �rLH→�L (18)

�aLH∕I � �a�F∕I � �ωF∕I × �ωF∕I × �r�F→LH � �αF∕I × �r�F→LH (19)

rL � CF��r�F→LH� (20)

rLL � CL� �rLH→�L � (21)

VF �

8><
>:
uF

vF

wF

9>=
>;; ωF �

8><
>:
pF

qF

rF

9>=
>;;

_VF �

8><
>:

_uF

_vF

_wF

9>=
>;; _ωF �

8><
>:

_pF

_qF

_rF

9>=
>; (22)

SVF � SF�VF� �
"

0 −wF vF
wF 0 −uF
−vF uF 0

#
(23)

SωF � SF�ωF�; SL � SF�rL�; SLL � SL�rLL� (24)

aL � TTLHTβLTLF� _VF � SωFVF − SL _ωF � SωFSωF rL� − SLL _ωL
� SωLSωLrLL (25)

The preceding equation requires knowledge of the angular velocity
and angular acceleration of the wing. Kinematic relationships can be
used to define these in terms of the state variables, Eqs. (26–28).
Again, all terms are transformed to thewing body frame. These terms
are also used in the derivative of angular momentum in the derivation
of the rotational dynamic equations of motion for the wing. The
derivative of angular momentum of the left wing is provided in
Eq. (29), written in component form in Eq. (30).

�ωL∕I � �ωL∕F � �ωF∕I (26)

ωL � TTLHTβLTLFωF � TTLHΛ_βL (27)

αL � _ωL � TTLHTβLTLF _ωF � TTLHΛ�βL � TTLH _TβLTLFωF (28)

Id �H�L∕I
dt

�
Ld �H�L∕I

dt
� �ωL∕I × �H�L∕I (29)

CL

�Id �H�L∕I
dt

�
� IL _ωL � SωL ILωL (30)

Thewing forces includeweight, aerodynamics, and joint constraints.
Thewingmoments about the body c.g. include aerodynamics, elastic
stiffness and damping, and joint constraints. TheΛ andΦmatrices of
Eq. (31) select the appropriate component of the flapping angular-
velocity vector and joint constraint moments, respectively.

Λ �
"
1

0

0

#
; Φ �

"
0 0

1 0

0 1

#
(31)

The translational and rotational dynamic equations of motion for all
three bodies then yield the six equations in component form,
Eqs. (32–37).

mF� _VF � SωFVF� � FFAERO
� FTHRUST � FFGRAV

� FLH � FRH

(32)

IF _ωF � SωF IFωF � MFAERO
�MTORQUE − TTLFΛMLELASTIC

− TTLFΛMRELASTIC
�MLH �MRH (33)
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mLTL� _VF � SωFVF − SL _ωF � SωFSωF rL� −mLSLL _ωL
�mLSωLSωLrLL � FLAERO

� FLGRAV
− TLFLH (34)

IL _ωL�SωL ILωL�MLAERO
�TTLHΛMLELASTIC

−TLΦLMLH

−TLSLFLH (35)

mRTR� _VF � SωFVF − SR _ωF � SωFSωF rR� −mRSRR _ωR
�mRSωRSωRrRR � FRAERO

� FRGRAV
− TRFRH (36)

IR _ωR � SωRIRωR � MRAERO
� TTRHΛMRELASTIC

− TRΦRMRH

− TRSRFRH (37)

The constraint forces and moments at the joints are of interest to
monitor during the simulation, so they are retained in the dynamic
equations rather than being algebraically eliminated. This creates a
matrix equation consisting of 18 equations and 18 unknowns given in
Eqs. (38–45), which is solved for the state derivative vector required
for numerical simulation, as well as the joint constraint forces and
moments.

�A�

8>>>>>>>>>>><
>>>>>>>>>>>:

_VF
_ωF
�βL
�βR
FLH

FRH

MLH

MRH

9>>>>>>>>>>>=
>>>>>>>>>>>;

�

8>>>>>><
>>>>>>:

B1

B2

B3

B4

B5

B6

9>>>>>>=
>>>>>>;

(38)

in which

A �

2
6666664

mFI3×3 0 0 0 −I3×3 −I3×3 0 0

0 IF 0 0 −SL −SR ΦL ΦR

mLTL −mLTLSL −mLSLLTL −mLSLLTTLHΛL 0 TL 0 0 0

0 ILTL ILT
T
LHΛL 0 TLSL 0 TLΦL 0

mRTR −mRTRSR −mRSRRTR 0 −mRSRRTTRHΛR 0 TR 0 0

0 IRTR 0 IRT
T
RHΛR 0 TRSR 0 TRΦR

3
7777775

(39)

B1 � −mFSωFVF � FF (40)

B2 � −SωF IFωF �MF (41)

B3 � −mLTL�SωFVF � SωFSωF rL� �mLSLLTTLH _TβLTLFωF

−mLSωLSωLrLL � FL (42)

B4 � −ILTTLH _TβLTLFωF − SωL ILωL �ML (43)

B5 � −mRTR�SωFVF � SωFSωF rR� �mRSRRTTRH _TβRTRFωF

−mRSωRSωRrRR � FR (44)

B6 � −IRTTRH _TβRTRFωF − SωR IRωR �MR (45)

The �A�matrix in Eqs. (38) and (39) is a square 6 × 6 block matrix, in
which each block consists of a 3 × 3 matrix. The Bmatrix is a 6 × 1
block vector, in which each element consists of three rows.

D. Applied Loads

In the preceding dynamic equations of motion, the total externally
applied forces and moments about the mass center in the individual
body reference frame appear, such as FF and MF for the fuselage
body, andFL andML for the left wing. These terms do not include the
connection constraint loads, but are comprised of the forces and
moments due to gravity, aerodynamics, propulsion, and joint
elasticity. The propulsive force and moment consist of the thrust and
torque generated by the propulsive system.

1. Elastic Loads

The compliant hinge is modeled as a linear rotational spring and
damper, generating a moment about the hinge axis when the flap
angle of thewing is deflected from the zero-load rotation angle of the
spring β0. This moment is applied equally and opposite between the
fuselage and wing bodies. The component of the elastic moment in
the joint frame is given in Eq. (46), in which k is the spring stiffness
and c is the damping coefficient.

MLELASTIC
� −k�βL − β0� − c_βL (46)

2. Aerodynamic Loads

Aerodynamic loads on the aircraft are computed using
superposition. In the preceding equations ofmotion, the aerodynamic
forces and moments are determined for each body individually. For
the fuselage body, which consists of the fuselage, vertical tail, and
horizontal tail, a stability-derivative formulation is employed. For the

left and right wings, a nonlinear lifting-line approach is used. Both
models are described as follows.
Analytical stability derivatives are used for the fuselage, as well as

analytical estimates for the conventional control derivatives. The lift
and drag forces, Eqs. (47) and (48), respectively, are determined by
the lift and drag on the fuselage, vertical tail, and horizontal tail. In
Eq. (48), e is Oswald’s efficiency factor, and is the tail aspect ratio.
The first three terms of the drag model, Eq. (48), represent the two-
dimensional (2-D) airfoil drag from the tail lifting surface. The
fuselage drag is also included in the first term, CD0. The fourth term,
which is dependent on the square of the lift coefficient, adds the three-
dimensional finite wing, or induced drag, effects. The side-force
coefficient is given in Eq. (49). The lift and drag forces are rotated
through the angle of attack to transform them to the body frame,
Eq. (50). The coefficients of roll, pitch, and yaw moments are
presented in Eqs. (51–53). The body-frame forces and moments are
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calculated from the coefficients using Eq. (54), in which S is thewing
area, b is the wingspan, and �c is the mean aerodynamic chord.

CL � CL0
� CLα

α� CLδLE
δLE � CLδRE

δRE (47)

CY � CYβ
β� CYpp̂� CYr r̂� CYδR

δR (49)

(
CX
CY
CZ

)
�
"
cos�α� 0 − sin�α�

0 1 0

sin�α� 0 cos�α�

#(−CD
CY
−CL

)
(50)

Cl � Clβ β� Clp p̂� Clr r̂� ClδLE δLE � ClδRE δRE � ClδR δR (51)

Cm � Cm0
� Cmα

α� Cmq q̂� CmδLE
δLE � CmδLE

δLE (52)

Cn � Cnβ β� Cnp p̂� Cnr r̂� CnδLE δLE � CnδRE δRE � CnδR δR
(53)

8>>>>>><
>>>>>>:

X
Y
Z
L
M
N

9>>>>>>=
>>>>>>;
� 1

2
ρ∞V

2
∞S

8>>>>>><
>>>>>>:

CX
CY
CZ
bCl
�cCm
bCn

9>>>>>>=
>>>>>>;

(54)

The aerodynamic loads on each wing are calculated using a
numerical lifting-linemethod, as detailed in [35]. Thewing is divided
into spanwise stations, forming panels, as depicted in Fig. 3. A node
point is placed at the quarter chord of each station. Each panel has a
horseshoe vortex with circulation strength of Γp. The bound portion
of the horseshoe vortex is placed along the quarter chord connecting
the node points. The trailing vortices of the horseshoe vortex are
aligned with the freestream velocity direction. A control point is
placed on each panel at the quarter chordmidwaybetween nodes. The
downwash at an arbitrary control point from any horseshoe vortex is
obtained using the Biot–Savart law. The vectors �r1 and �r2 are defined

from each node point of a horseshoe vortex to the control point.
Notation for the magnitudes of these vectors is provided in Eq. (55).
The total downwash at the control point from the horseshoe vortex
can be written by summing the downwash contribution from each
vortex filament of the horseshoe, Eq. (56). It is of note that a bound
vortex does not produce downwash along its length, and the second
term in the brackets of this equation, which is the downwash
contribution from the bound vortex, will produce a singularity when
�r1 and �r2 are collinear and opposite directions. This is the case in
Fig. 4, when the control point investigated is on the same panel as the
horseshoe vortex. In such cases, Eq. (57) must be used to avoid the
singularity. The effective angle of attack that determines the lift on
the local airfoil section is found from Eq. (58). It is important to note
that the freestream velocity components in this equation include
aerodynamic velocity imparted by the motion of the body and
atmospheric wind, if any exists. The induced velocity components in
Eq. (58) are described in the local-airfoil-section body frame.
However, Eqs. (56) and (57) are easiest to compute with the vectors
expressed in the inertial frame. Equation (59) relates the inertial-
frame downwash-vector components to the local-frame downwash
components.

r1 � k �r1k; r2 � k �r2k (55)

�ε�
Γp
4π

�
�V∞× �r2

r2�r2− �V∞ · �r2�
� �r1�r2�� �r1× �r2�
r1r2�r1r2� �r1 · �r2�

−
�V∞× �r1

r1�r1− �V∞ · �r1�

�
(56)

�ε �
Γp
4π

�
�V∞ × �r2

r2�r2 − �V∞ · �r2�
−

�V∞ × �r1

r1�r1 − �V∞ · �r1�

�
(57)

αe � tan−1
�
w∞ − wi
u∞ � ui

�
(58)

(
ui
vi
wi

)
� TTIBCI��ε� (59)

The calculation to include the wake into the contribution to
aerodynamic loads from lifting surfaces does not have a closed-
form solution for arbitrary configurations. An iterative, numerical
approach is adopted [36,37]. An initial spanwise downwash
distribution is assumed at all control points. Using this initial
downwash, the lift, drag, and pitching moment are calculated at each
panel using 2-D airfoil data. From the panel lift, the circulation
strength of the horseshoe vortex at each panel is calculated using
Eq. (60), in which L 0p is the sectional lift, cl is the sectional lift
coefficient, and �cp is themean aerodynamic chord of the panel. Using

V∞

Γp

Fig. 3 Spanwise panels and example horseshoe vortex for numerical
lifting-line method.

Node 1

Control Point

Node 2

1r

2r
∞V

∞Vε

Fig. 4 Influence of horseshoe vortex on control point.
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Eqs. (56) and (57), the downwash contribution from every horseshoe
vortex on each control point is calculated and summed to compute a
new downwash distribution. The new distribution is compared to the
previous, and if the difference is within the specified convergence
criteria, the solution is considered to be converged. Otherwise, the
newly calculated distribution is damped, as in Eq. (61), and used as
the initial distribution, and the process iterates until convergence is
achieved [36,37]. Once convergence is reached, the induced angle of
attack is calculated at each station, which is then used to obtain the
effective angle of attack. With knowledge of the 2-D airfoil, the
section lift, drag, and pitching moment of each panel are obtained.
The contribution of each panel to the aerodynamic forces and
moments about the wing c.g. in the body frame is then summed over
all the panels on the wing.

Γp �
L 0p

ρ∞V∞
� 1

2
V∞ �cpcl (60)

�εinput � �εold � ζ��εnew − �εold� (61)

E. Flying-Quality Analysis

Linear dynamic models of the aircraft system are generated from
the nonlinear equations of motion about a steady, level-flight
condition using small perturbation theory [38]. The linear models are
used to perform modal analysis. The ability of an aircraft to perform
various categories of missions and the phases of flight composing the
mission without undue stress on the operator are measured by the
flying-qualities criteria defined in MIL-F-8785C [39]. These criteria
are determined from the natural frequency and damping of the low-
frequency flight dynamic modes of the vehicle.
In the military specifications, the short-period-mode flying

qualities are also quantified by the parameters acceleration sensitivity
and control anticipation parameter (CAP). The acceleration
sensitivity ηα is the normal load factor per unit angle of attack of
the vehicle, which is generally a fixed quantity for an aircraft not
related to the dynamic response, since it only depends on the weight
and lift-curve slope of the vehicle. The CAP uses the natural
frequency of the short-period mode in its formulation.

ηα �
CLα

CW
(62)

CAP �
ω2
nSP

ηα
(63)

To elucidate how compliant hinges change the flight dynamic modes
of thevehicle, the changes in the aerodynamic stability derivatives are
investigated using static aeroelasticity analysis, such as that described
in [40]. Assuming quasi-static wing flapping, the flap rates, _βL and
_βR, and acceleration are zero, and the flap angles βL and βR can be
determined from the linear model in terms of the other state variables.
These can then be substituted into the numerically calculated
aerodynamic stability derivatives to determine the effect of flexibility
on the stability derivatives that significantly contribute to the
traditional dynamic modes of the vehicle. For the short-period mode,
the modal natural frequency is largely determined by the stability
derivatives Mw, Zw, and Mq. These terms are all negative and will
increase the natural frequency of the mode as their magnitudes
increase. The stability derivatives Zw and Mq contribute to the
damping of the short-period mode, increasing the damping as they
becomemore negative. The natural frequency of the phugoid is most
affected by Zu, which increases the natural frequency as it becomes
more negative. The damping of the mode is affected by Xu, with
damping increased by more negative values of Xu, as well as the
natural frequency of themode. In the longitudinalmodes, increases in

the natural frequency of a mode will reduce the mode damping. The
roll mode, which is nonoscillatory, is determined by Lp andNp. The
roll-damping termLp stabilizes themode and reduces the time to half
as it becomesmore negative. The termNp is destabilizing to themode
if it is positive, increasing the time to half of themode, and stabilizing
if it is negative. Likewise, the contributions to the spiral mode include
Nr, Lr, Nv, and Lv with the weathercock stability Nv, destabilizing
themode, and the dihedral effectLv, stabilizing themode. The natural
frequency of the Dutch-roll mode increases with larger weathercock
stability and dihedral. Yaw damping, Nr, and weathercock stability
derivatives increase damping and stabilize the mode, whereas
increasing dihedral decreases damping to destabilize the mode.

III. Results

To explore the ability of discrete structural hinges to tailor flight
dynamic behavior, results are generated for an example aircraft.

A. Aircraft

The example is a small, conventional unmanned aircraft. It is
pictured, along with reference frames assigned to each body,
in Fig. 1. The mass of the aircraft is 0.84 kg. The wingspan is 0.8 m,
and the mean aerodynamic chord is 0.082m. The aircraft has a cruise
speed of 17.3 m∕s. The acceleration sensitivity of the aircraft
is 7.3 rad−1.
The wings of the aircraft are hinged, permitting rotation about the

joint axis. Elasticity of the discrete structural joint is modeled with
rotational springs and dampers. The nominal aircraft configuration
has the wings’ elastic hinges at the wing root and attached to the top
center of the fuselage. The elastic joint spring stiffness is
10 N · m∕rad, and joint damping coefficient is 0.30 N · m∕�rad∕s�.
Parameters are varied about this nominal configuration. The spring
stiffness is varied from 0.5 to 75 N · m in increments of 1 N · m, and
the damping coefficient is varied from 0.05 to 1.0 N · m∕�rad∕s� in
increments of 0.05 N · m∕�rad∕s�.

B. Compliant-Hinge Configurations

In the nominal configuration, the hinges are alignedwith the I axes
of each wing and the fuselage body. In one configuration study, the
vertical location of the hingewhere the roots of thewings attach to the
fuselage is varied, whereas the horizontal location of the hinge
remains in the center of the fuselage. Keeping with the traditional
aircraft body-fixed frame, a positive distance is below the fuselage
c.g. The attachment point is varied from −0.030 m (top of the
fuselage) to 0.030 m (bottom of the fuselage) by increments of
0.002 m. Figure 5a is a diagram depicting the variation in the vertical
hinge location on the fuselage.
The hinges can also be oriented so that the pitch or sweep of the

wing will couple with the dihedral change, known as pitch–flap
coupling or sweep–flap coupling. This is achieved by rotating the
hinge axis by the angle δ3, as shown in Fig. 5b for pitch–flap
coupling, or by the angle δ2, Fig. 5c, for sweep–flap coupling. In the
case of pitch–flap coupling, the angle of attack will increase or
decrease as the wing is deflected. For both δ3 and δ2 hinge
orientations, the hinge-axis angles are varied from −90 to�90 deg
by increments of 1 deg. The effect ofmoving the location of the hinge
along the span of the wing, thereby changing the area of the wing
section being articulated, is also studied. This hinge offset is shown as
the distance e in Fig. 5b. Each wing is divided into eight uniform
sections, and the hinge is placed at each of these division points.
Thus, for a half-span of 0.40m, the hinge is varied from 0 to 0.35m in
increments of 0.05 m.

C. Trim Controller

The rigid version of the aircraft has four controls: throttle, rudder,
right elevon, and left elevon. These are used to achieve basic trim of
the vehicle. The elevon commands are determined by mixing the
elevator and aileron commands computed by a trim controller. To
achieve a straight-and-level trim condition, a simple four-channel
proportional–integral (PI) trim controller is used. Throttle is used to
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control velocity to a commanded value. Ailerons are used to zero the
bank angleϕ, and rudder is used to zero sideslip v. Elevators are used
to hold a commanded altitude. To calculate the elevator command, a
PI controller based on the altitude error is first used to generate
a pitch-angle command. The pitch-angle command is then fed into a
proportional controller to determine the elevator angle. In addition to
the trim controller, another controller changes the zero-load angle of
the joint rotational spring, so that the wings have 3 deg dihedral in
trim for equal comparison of all cases, since lower spring-stiffness
values naturally allow the wings to increase dihedral. This ensures
that the linear models are generated about the same vehicle trim state
regardless of hinge design parameters.

D. Stability Analysis

For each parameter variation, a linear model is generated about a
steady, level trim condition. The dynamics matrix, or state matrix, of
the linear dynamic system consists of partial derivatives of the state
equations evaluated at the trim state. These partial derivatives are
obtained numerically using fourth-order central differencing. For
numerical-derivative calculations, the position states are perturbed by

a value of 1.0 × 10−4, attitude states by 10−5, and velocity and
angular-velocity rates by 10−6. Performing eigenanalysis on the
linear-model state matrix, root-locus plots are generated to depict
how themodes change as the discrete structural-hinge parameters are
varied. Table 1 summarizes the effect of changes in each hinge design
parameter on the flight dynamic modes of the vehicle. Ranges of
natural frequency, damping, or time to half (double) are given for
each mode, as appropriate. A dash in the table represents when the
hinge parameter does not affect the mode (variations less than 1%).
Overall, the longitudinal modes are more affected by variations in
properties of the discrete structural hinge than the lateral modes. The
δ3 orientation has the largest impact on themodal properties, whereas
hinge damping has the smallest effect. More details on each trade
study, analysis of the root loci, and the effect on handling qualities are
provided as follows.

1. Effect of Spring Stiffness

The spring stiffness k is varied from 0.5 to 75 N · m∕rad, first from
0.5 to 1 N · m∕rad, and then in increments of 1 N · m∕rad. As the
spring stiffness is increased, the aircraft becomes more similar to a
rigid aircraft. Statically (on the ground, nowind), at the softest spring
stiffness of 0.5 N · m∕rad, the wings droop 19.2 deg from their own
weight, whereas for the stiffest spring value of 75 N · m∕rad, wing
droop is 0.14 deg. At the nominal, moderate spring stiffness of
10 N · m∕rad, wing droop is 1 deg. In the root locus of Fig. 6, there
are two distinct very-high-order modes. These are the two modes
added to the system by the two additional DOF of the articulated
wings. The asymmetric dihedral mode is an overdamped mode
consisting of two real eigenvalues. At high, almost rigid, stiffness
values, the symmetric dihedral mode is a very high-frequency
oscillatory mode, but as k is decreased, the eigenvalues move toward
each other to an eventual break-in point, after which the mode is
overdamped with two real eigenvalues. The symmetric flap mode
breaks in into a real mode between spring stiffnesses of 8
and 9 N · m∕rad.
Focusing on the low-frequency dynamics in Fig. 7, spring stiffness

of the discrete structural hinge affects the traditional dynamic modes

a) 

hv

KF

JF

Right Wing 
Hinge Axis 

-δ3 

+δ3 

Left Wing 
Hinge Axis 

e

b) 

+δ2 

Left Wing 
Hinge Axis 

c) 

Fig. 5 Configuration parameters: a) vertical hinge location, b) spanwise
hinge location and δ3 hinge orientation, and c) δ2 hinge orientation.

Table 1 Summary of mode changes by varying parameters

Short period Phugoid Dutch roll Roll Spiral

ωn ζ ωn ζ ωn ζ t1∕2 tdouble

Spring stiffness 10.7–12 0.415–0.499 0.603–0.614 0.11–0.21 — — — — 0.0516–0.0531 — —

Hinge damping 10.6–11 0.44–0.46 — — — — — — — — 0.052–0.0537 — —

Vertical hinge location 7.05–10.72 0.462–0.738 0.604–0.718 0.154–0.211 — — 0.087–0.091 0.0517–0.0526 — —

Spanwise hinge location — — 0.421–0.462 — — 0.211–0.215 — — — — — — — —

δ3 Orientation 8.69–11.9 0.32–1.01 0.435–0.959 0.064–0.30 — — 0.0897–0.0914 0.050–0.053 4.64–4.84
δ2 Orientation 9.09–11.7 0.346–0.651 0.504–0.757 0.151–0.259 — — 0.0912–0.0927 — — — —

Asymmetric Dihedral Asymmetric Dihedral 

Symmetric 
Dihedral 

Low 
Order 
Dynamics 

Fig. 6 Root locus as a function of discrete structural-hinge spring
stiffness.

8 AIAA Early Edition / LEYLEK AND COSTELLO

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

Se
pt

em
be

r 
28

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.C

03
30

56
 



of the aircraft. The most notable changes occur in the short-period
mode. Table 1 provides ranges for changes in the short-period mode,
but examining the root locus plots in Fig. 8, it is apparent that it is not
possible to achieve any combination of damping and natural
frequency. As stiffness is decreased, the short-period mode first
increases damping while decreasing natural frequency. Then, the

natural frequency increases while damping is decreased. The
eigenvalues representing the maximum and minimum damping and
natural frequency are noted on the plots with letters A, B, C, and D.
For the phugoid, mode damping is impacted much more than the
natural frequency. At the highest stiffness considered, the mode is at
its maximum damping and minimum natural frequency, and as the
stiffness is decreased, the damping decreases and natural frequency
increases. The roll mode is not significantly impacted by the change
in stiffness. Interestingly, though, at a stiffness of 4 N · m∕rad, the
roll mode mixes with one of the asymmetric flap modes to create a
new slightly oscillatory flap-rollingmode, seen in Fig. 7. Themode is
extremely highly damped, however, so it does not alter the flight
dynamic response to control input significantly.
These changes in modal frequency and damping correspond to

changes in the flying qualities of the aircraft. In the short-period
mode, changing the stiffness through a wide range yields a 12.1%
change in the undamped natural frequency. This produces a 25.8%
change in the CAP. The damping ratio of the short-period mode
changes by 20.2%. Handling qualities for the phugoid are given as a
minimum damping ratio. The range of damping of the phugoid varies
by 90.9% from the lowest damping ratio at a spring stiffness of
0.5 N · m∕rad to the highest damping ratio at the highest spring
stiffness of 75 N · m∕rad. The lowest damping ratio is still well
above the minimum for Level 1 performance in this case, so the
phugoid handling qualities can be traded off for better performance in
the short-period modewhen using compliant hinges. The only lateral
mode affected by the spring stiffness is the roll mode, for which
handling-quality criteria are determined by the maximum time
constant of the mode. The roll-mode time constant varies 3.75%,
mostly due to the mixing of the flap mode with the roll mode. The
spiral and Dutch-roll modes are not affected by variations in spring
stiffness.
From static aeroelastic analysis of the stability derivatives, the

increase in natural frequency of the short-period mode due to
decreasing stiffness is largely driven by the pitch stiffness, Mw,
becoming more negative. The decrease in damping of the mode with
decreasing stiffness is a result of the increase in natural frequency, as
well as the Zw stability derivative becoming less negative. These
stability derivatives vary nonlinearly with spring stiffness. With an
increase in vertical velocityw, flexible hinges allow thewings to flap
up, increasing the dihedral. This reduces the Z aerodynamic force of
the wing, thereby also reducing the pitch-moment contribution from
thewing because the c.g. of the vehicle is located aft of themain wing
aerodynamic center. The phugoid mode is largely affected by the
stability derivatives Xu and Zu. As spring stiffness is decreased, Xu
becomes more negative by 5% and Zu becomes less negative by 7%.
These changes suggest an increase in the damping of the phugoid
mode, but the opposite trend is seen, whereby the damping of the
phugoid mode is significantly reduced with hinge flexibility. This
suggests that coupling of the acceleration and velocity terms, such as
the flapping rate of the wings, which is not accounted for in the static
aeroelastic analysis, plays the largest role in the phugoid response.

2. Effect of Damping Coefficient

The damping constant is varied from 0.05 to 1.0 N · m∕�rad∕s� by
0.05 N · m∕�rad∕s�. Of the traditional low-frequency flight dynamic
modes, the short-period and roll modes are most affected by the
damping coefficient, Fig. 9. The points corresponding to the
maximum and minimum mode damping and natural frequency
of the short period are labeled on the graph. The roll mode again
mixes with the low-order overdamped asymmetric flap mode to
create a new slightly oscillatory flap-rolling mode. This occurs at the
same spring stiffness to damping ratio in this case as in the variable
spring-stiffness case. To better show the modal behavior, a finer
increment is used between the damping ratios of 0.7 and
0.8 N · m∕�rad∕s�. While the new mode remains nearly critically
damped, there is a noticeable change in the time to half of the mode.
In relation to handling qualities, the natural frequency of the short-

period mode increases by 3.77% across the range of damping ratios
tested, corresponding to a 7.69% increase in the CAP. The damping
ratio of the short-period mode can be increased by 4.54%. The only

Short Period

S iral 

Dutch Roll 

Phugoid Roll 
Symmetric 
Dihedral 

p

Fig. 7 Root locus of traditional flight dynamic modes as a function of
spring stiffness.

B
C

D
A

A,D 

C

B

Fig. 8 Spring stiffness variation; A: maximum damping, B: minimum
damping, C: maximum natural frequency, D: minimum natural
frequency.
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other mode affected is the roll mode, which has an increase in time
constant of 3.33% due to the modemixing. These changes are indeed
small, so the damping coefficient mainly affects the high-frequency
flap behavior, not the low-frequency flight dynamic modes.
Additionally, the changes in the stability derivatives are insignificant.
The small changes in the modes due to the hinge damping are likely
due to effects of the flap rate and acceleration, which are not predicted
using a static analysis. This correlates with the eigenvectors of the
mode, which have significantly larger components of flap rate than
flap angle.

3. Effect of Vertical Hinge Location on Fuselage

The point of attachment of the wing root to the fuselage is varied
vertically from the bottom of the 0.06 m diameter fuselage to the top
in increments of 0.002 m. The attachment point is at the center of the
fuselage in all cases. The wing attachment point is a type of basic
aircraft design parameter that can be used by engineers to tailor the
dynamic mode characteristics and handling qualities. This is because
the distance of the wing aerodynamic center to the c.g. of the vehicle
will affect the sign and magnitude of the aerodynamic moments
produced. As shown in Table 1, the vertical hinge location affects all
of the low-order dynamic aircraft modes, except for the spiral mode,
most notably affecting the longitudinal modes. As the vertical
hinge location is moved, the pitching moment from the drag force
changes.
While an aircraft designer may use wing attachment location and

other basic configuration parameters as ameans to tune the dynamics
and handling qualities of an aircraft, Fig. 10 shows how a compliant
hinge can greatly widen the range of possible mode characteristics.

Figure 10 compares the changes in the longitudinal modes as the
vertical hinge location is varied for several spring stiffness values (5
and 10 N · m∕rad, and rigid). The configuration alone or the
presence of compliant hinge alone can be used to tailor the stability
characteristics and handling qualities of the vehicle; however, the
hinge location and hinge elasticity combined provide a way to
significantlywiden the range of achievablevalues. In the short-period
mode shown in Fig. 10, varying the hinge location alone for a rigid
aircraft provides a range of mode damping constants from 0.42 to
0.655 (top to bottom), which is a 55.8% increase in damping. The
natural frequency varies from 10.7 to 7.06, corresponding to a 34.3%
decrease in the modal natural frequency. In comparison, a very soft
spring increases the damping from 0.499 to 0.864, corresponding to a
73.1% increase, which adds significantly more modal damping than
the rigid aircraft. The change in natural frequency is fairly similar to
the rigid case, decreasing from 11.2 to 7.88, a change of 30%. In the
phugoid mode, Fig. 10, changing only the vertical hinge location
(rigid case), the mode damping decreases from 0.2150 to 0.167, a
22.3%decrease.With a very soft spring, themode damping decreases
from 0.206 to 0.141, corresponding to a 31.6% decrease in damping.
Thus, a very soft spring provides a significant increase in the range of
the mode. The variation in natural frequency between the elastic and
rigid cases is less apparent for both longitudinal modes. It is of note
that, when the damping of the short-period mode increases, the
damping in the phugoid decreases, so there are competing values.
For the nominal configuration with a spring stiffness of 10 N ·

m∕rad presented in Table 1, the combination of compliant hinge and
variation in the vertical hinge location produces a 52% change in
natural frequency of the short-period mode from minimum to
maximum. This is a 131% change in the CAP of the aircraft. The
damping coefficient can be increased by 60%. These numbersmean a

B,C 

A
D

Fig. 9 Damping coefficient variation; A: maximum mode damping, B:
minimummode damping, C: maximum natural frequency, D: minimum
natural frequency.

Fig. 10 Root loci for varying vertical hinge location at several spring-
stiffness values.
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marginally Level 3 or Level 4 rated aircraft could become a Level 1
rated aircraft. While the damping of the phugoid degrades to obtain
these improvements in the short period, the phugoid damping is still
above the Level 1 minimum damping criteria for the phugoid.
In the lateralmodes, theDutch-roll damping ratio changes by 4.6%

with a minute change in natural frequency, increasing as the hinge
is moved from the bottom to the top. The flying-qualities criteria
for the Dutch-roll mode consist of minimum values for the damping,
natural frequency, and the multiplication of the damping ratio
and natural frequency. In this study, the damping ratio multiplied
by the natural frequency changed by 4.17%. The roll-mode time
constant only changes by 1.7%; the maximum occurs with the hinge
located at the top of the fuselage, and the minimum occurs when the
wing is hinged at the center of the fuselage. The effect on the lateral
modes is minor.

4. Effect of Spanwise Hinge Location on Wing

Rather than hinging the wing at its root where it connects to the
fuselage, the hinge ismoved to various locations along the span of the
wing, such that a smaller portion of the wing can flap. This spanwise
location is depicted in Fig. 5b by the distance e. The span of each
wing is 0.4 m, and the hinge location is varied from root to tip in
increments of 0.05m.The results are listed inTable 1 and presented in
Fig. 11. It is expected that moving the hinge out to the wingtip will
increase the rigidity of the aircraft, so the trends in modal changes
should be similar to those of stiffening the spring. In the phugoid
mode, the damping of the mode changes by 2.2%, increasing as the
hinge is moved from root to tip. The short-period-mode damping
ratio decreases 9% as the hinge location varies from root to tip. The
changes in the natural frequencies of both longitudinal modes are
negligible. The spanwise hinge location also has a trivial effect on the
lateral modes of the vehicle. This closely follows the modal changes
seen in the spring-stiffness results when the stiffness is increased
from 10 to 75 N · m∕rad. These results suggest that the hinge
location could be moved slightly for ease of fabrication, or to avoid
control surfaces, propulsive devices, inner ribs, etc., on the wing
without significantly impacting the handling qualities of the aircraft.

5. Effect of δ3 Hinge Orientation

Implementation of a compliant hinge in the wing structure allows
pitch–flap coupling to be introduced to producewash-in or wash-out,
which can have profound implications on the lower-order dynamic
modes of the vehicle, as seen in the results presented in Table 1 and
Fig. 12. The δ3 hinge orientation is varied from −90 to�90 deg by
increments of 1 deg. The left-wing and right-wing δ3 angles are
always equal and opposite so as to produce the same pitch–flap
coupling on either wing. For example, when the left wing has a�δ3
angle and the right wing a negative δ3 angle, a flap up, or increase in

dihedral, of both wings will produce an increase in the angle of attack
of both wings.
As seen in Table 1 and Fig. 12, the δ3 orientation of a compliant

hinge can affect all of the low-order modes. The short-period mode
has the lowest damping when the left hinge has −45 deg hinge
orientation and the right �45 deg, and becomes overdamped when
the left hinge has�45 deg and right wing−45 deg angle. Themode
is overdamped the most at an angle of�48 deg on the left wing, and
−48 deg on the right wing. The opposite is true for the phugoid
mode, however. In that mode, the lowest damping occurs when the
left hinge is at a �45 deg angle, right hinge at −45 deg, and the
highest damping occurs when the left hinge is at −45 deg and right
hinge at �45 deg δ3 orientation. Figure 12 is annotated with the
hinge orientations for clarification. The short-period damping is
higher with positive left-hinge orientation and negative right-hinge
orientation because, for example, if there is a negative pitch-rate
disturbance, this will increase the angle of attack on the wings. This
angle-of-attack increase will cause the wings to flap up, further
increasing the angle attack and lift, and thereby producing a positive
pitching moment that will oppose the negative pitch disturbance.
The δ3 orientation has the largest effect on the roll mode of any

parameter studied. The minimum time to half occurs with a δ3 angle
of�67 deg on the left wing and−67 deg angle on the right wing. In
this configuration, when a positive roll-rate disturbance occurs, the
relative velocitywill increase the angle of attack on the rightwing and
decrease the angle of attack on the left wing. This will increase the lift
on the right wing and decrease the lift on the left wing, causing a flap
up on the right wing and a flap down on the left. The differential flap
causes differential angle-of-attack changes on the wing, producing a
negative roll moment to oppose and damp out the initial positive roll-
rate disturbance.
The hinge orientation significantly impacts the flying-quality

criteria of the longitudinal modes. The natural frequency of the short-
period mode changes 37%, thereby changing the CAP 87.5%. The
damping ratio increases 217%.However, the damping ratio decreases
as the natural frequency and CAP increase. The hinge orientation can
improve the flying qualities of the vehicle from one Level rating to
another, or even from Level 3 to Level 1. The phugoid-mode natural
frequency increases by 120%. The range of damping ratios seen
shows that the damping ratio of the mode could be increased 369%.
In the lateral modes, the Dutch-roll damping is not significantly

impacted by hinge orientation, but does change 1.9%. The minimum
Dutch-roll damping occurs in the�45 deg left-wing δ3 orientation,
−45 deg right-wing δ3 orientation configuration, and the maximum
damping in the Dutch-roll mode occurs in the opposite configuration
with −45 deg left wing δ3 and �45 deg δ3 right wing. The roll-
mode time constant changes 6%, and the spiral mode time to double
changes 4.3%.
Significant changes in the stability derivatives are noted as the δ3

angle is varied, which drive the dynamic mode changes. In the short-
period mode, Mw is most negative at −45 deg left-wing angle and
�45 deg right-wing angle, corresponding to maximum natural
frequency, and is least negative at a �45 deg left-wing, −45 deg
right-wing orientation. The stability derivative Zw becomes less
negative with a −45 deg left-wing angle and �45 deg right-wing
angle, which, combined with the increase in natural frequency
for this configuration, reduced the short-period-mode damping.
The maximum damping occurs at the�45 deg left-wing, −45 deg
right-wing orientation, where Zw is 23% more negative than the
nominal configuration with zero δ3 orientation. These changes in
Zw correspond to the changes inMw because the c.g. of the vehicle
is behind the aerodynamic center of the main wing. As the vehicle
is perturbed in w, the wings flap, producing a change in the angle
of attack for nonzero δ3 angles, which in turn affects the wing
aerodynamic forces and moments. In the �45 deg left-wing,
−45 deg right-wing case, a positivew perturbationwould flap up the
wings, increasing the angle of attack and lift, providing a restoring
force that damps out the short-period mode, hence the increase in
damping in this case. In the−45 deg left-wing,�45 deg right-wing
case, a positive w perturbation flaps up the wings, but decreases the
angle of attack and lift, reducing the damping in the short-periodFig. 11 Changes in dynamic mode as spanwise hinge location is varied.
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mode. The pitch-damping derivative Mq also contributes to the
damping changes, although much less so than the derivatives with
respect to w. Original expectations were that δ3 angles of 90 deg on
each wing would produce the most damping, because the wing
flapping would directly correspond to an angle-of-attack change and
the flap angles would be larger because rotation occurs about the
wing body axis of lowest inertia. Several terms factor into the effect of
flexibility on the Zw stability derivative in the static aeroelastic
analysis. The derivatives of Z aerodynamic force with respect to flap
angle βL and βR, as well as the derivatives of �βL and �βRwith respect to
w, are much larger for the 90 deg δ3 case. However, the coupling
between the flap angle of the opposite wing on the flap rate of a wing
(e.g., the derivative ∂�βL∕∂βR) is significantly larger for the 45 deg δ3
case, causing it to have the most negative Zw derivative, and thereby
maximum damping.
In the phugoid mode, the natural frequency is largely dependent on

the aerodynamic stability derivative Zu. In the �45 deg left-wing,
−45 deg right-wing case, this derivative decreases, becoming more
negative, by 21.9%, which increases the magnitude of the derivative
and thereby increases the natural frequency. The derivative Xu affects
the damping of the mode and becomes more positive, which reduces
themagnitude, by 8.26%.This reduction in theXu derivative combined
with the increase in the natural frequency reduces the damping of the
mode in this case from the nominal configuration with no δ3. In the
opposite casewith−45 deg left-wing,�45 deg right-wing δ3 angles,
Zu becomes more positive, which decreases the magnitude of the
derivative and natural frequency of the phugoid mode. The changes in

stability derivatives are related to the coupling of the angle of attack
with the flap angle for nonzero δ3 angles. The derivatives of the
aerodynamic forces X and Z with respect to flap angles make the
largest contribution to the changes in Xu and Zu calculated. These
changes in stability derivatives correspond to the changes in the
natural frequency and damping, and thereby handling qualities, of the
mode.
The roll mode depends mostly on the roll-damping stability

derivative Lp and the Np derivative terms. Changes in Np with
varying δ3 angles are insignificant, but the roll-damping term Lp is
more negative, thereby providing more damping and reducing the
time to half of the roll mode, at δ3 hinge orientations of�65 deg on
the left-wing and −65 deg on the right-wing case. At orientations of
−22 deg left-wing,�22 deg right-wing δ3 angles, a reduction in the
magnitude of roll damping Lp is noted from the nominal case,
corresponding to the maximum time to half of the mode noted in
Table 1. This corresponds to changes in the mode noted in the root
locus. The spiral mode is mostly affected by the aerodynamic
stability derivatives for yaw damping Nr, weathercock stability Nv,
dihedral stability Lv, and roll due to yaw coupling Lr. Weathercock
stability is destabilizing, and dihedral stability is stabilizing for the
spiral mode. Comparing the cases of zero δ3 angle with 90 deg δ3
angle, which have the maximum and minimum time to double of the
spiral mode, the 90 deg case has a larger (more negative) dihedral
stability derivative Lv and also has a slightly smaller roll–yaw
coupling term Lr. Both of these stabilize the spiral mode and reduce
the time to double of the mode for the 90 deg δ3 configuration.

Fig. 12 Changes in dynamic modes with changes in δ3 hinge orientations.
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The flight dynamic modes of aircraft configurations with nonzero
δ3 angles exhibit an increased sensitivity to other hinge design
parameters, such as spring stiffness and damping. This coupling
between the parameters significantly extends the range of achievable
mode tailoring. For example, in Fig. 13a, the spring stiffness is varied
from 6 to 75 N · m∕rad in increments of 1 N · m∕rad with the δ3
angle set at the nominal configuration of 0 deg. Minor movement in
the short-period mode due to variations in the spring stiffness is
observed. In comparison, Fig. 13b shows the effect of the same
variation in spring stiffness on an aircraft with the hinge δ3 angle
oriented at�45 deg on the left wing and−45 deg on the right wing.
The higher spring-stiffness values approach a rigid aircraft
configuration, so the modal values match between Figs. 13a and
13b in those cases. However, as the hinge becomes more flexible,
significantly more movement is apparent in the modes of the 45 deg
δ3 hinge case, Fig. 13b. The phugoid mode crosses the imaginary
axis and is unstable for spring-stiffness values less than 9 N · m∕rad.
The short-period mode increases damping until it becomes an
overdamped, realmode at a spring stiffness of 10 N · m∕rad, but then
breaks out into an oscillatory mode at a much higher natural
frequency as the stiffness is further reduced. The roll mode also
experiences a notable change in time to half, unlike the nominal case.
With a nonzero δ3 angle, the angle of attack changes as thewing flaps.
This introduces coupling between the lateral and longitudinal
motions, which greatly impacts the flight dynamic modes as more
flexibility is introduced.

6. Effect of δ2 Hinge Orientation

The δ2 hinge orientation, depicted in Fig. 5c, is varied from−90 to
�90 deg by increments of 1 deg. The δ2 hinge orientation produces

sweep–flap coupling. The left-wing and right-wing δ2 angles are
always equal for symmetry. With a �δ2 orientation, a flap up,
increasing the dihedral, will also sweep the wings back. For a −δ2
orientation, a flap up will sweep the wings forward. As reported in
Table 1 and Fig. 14, this can significantly change the longitudinal
modes of the vehicle, as well as affect the damping of the Dutch-roll
mode. The phugoid mode and the short-period mode show opposite
trends in terms. In the short period, the lowest damping occurs at
�45 deg δ2 angles, and the highest occurs at −45 deg δ2 angles. In
the Dutch-roll mode, the highest mode damping occurs at 90 deg
hinge angles, whereas the lowest damping is without any δ2 angle
present.
The damping ratio of the Dutch-roll mode changes 1.6%.

However, the δ2 hinge orientation causes large variations in the
response of the longitudinal modes. The natural frequency of the
short-period mode changes 28.7%, corresponding to a 65.7%
increase in theCAP.Themaximumchange in the damping ratio of the
short-period mode due to the δ2 hinge orientation is 88%. This, too,
provides ameans to improve the Level rating of the flying qualities of
the aircraft. The phugoid mode experiences possible increases in the
natural frequency of 50.2% and in the damping ratio of 71.5%.
Employing static aeroelastic analysis, changes in the short-period-

mode natural frequency are largely due to changes in the stability
derivative Mw. Interestingly, the derivative Zw does not change
significantly. The changes in Mw and short-period mode are likely
due to themovement in the aerodynamic center of thewing relative to
the c.g. of the vehicle as thewing sweeps forward or aft with flapping.
The pitch-damping derivative Mq, which also contributes to the
damping of the short-period mode, changes slightly by 2.4% from
the nominal case of zero δ2 angle to−45 deg δ2 angles to increase the

Fig. 13 Root loci for varying spring stiffness for a) δ3 of 0 deg, and b) δ3 of �45 deg on left wing, −45 deg on right wing.
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damping. In the phugoid, the derivative Zu does not change
significantly with varying δ2 angle. The derivativeXu, which appears
in the damping of the phugoid, changes slightly by 2.7% from the
nominal case of zero δ2 angle to−45 deg δ2 angles, reducing themode
damping. These small changes do not explain the large changes in the
phugoid mode observed from the root locus with varying δ2 hinge
orientations, suggesting that the flapping velocity and acceleration
terms, which are not accounted for in the static aeroelastic analysis, are
important to the phugoid-mode characteristics.

IV. Conclusions

The emergence of cost-effective multimaterial manufacturing
methods allows complex structures to be fabricated that incorporate
flexible structures,which act asdiscrete elastic hinges intoan otherwise
rigid structure. This presents new possibilities for designing aircraft,
particularly small unmanned aircraft. Rather than using typical design
parameters, such as the geometry and arrangement of the aircraft
components, the lifting surfaces can be constructed with a chordwise
strip of relatively soft structural material, which functions as an elastic
discrete hinge.The characteristics of the hinge can thenbe used to tailor
the dynamics of the vehicle.
From a series of parametric trade studies, it is shown that an

elastic hinge embedded in the wing causes coupling between the
flexible modes and traditional low-order dynamic modes, changing
the flight dynamic response of the vehicle. Along with the stiffness
of the joint material, the orientation of the hinge introduces coupling
of the lateral and longitudinal motions of the wing to affect the
response. Together, these provide a range of short-period-mode
characteristics from Level 4 to Level 1 flying-qualities ratings, such
that the elasticity and hinge orientation can be used to tailor the short-
period handling qualities. Nonzero hinge orientations also show
a significant increase in sensitivity to variations in the stiffness
and damping of the hinge, which allows even further tailoring of
the modes. Static aeroelastic analysis highlights the changes in
aerodynamic stability derivatives that drive the changes in the modes
with variations in the hinge parameters, and identifies cases in which
the modal changes are largely affected by the transient dynamics, for
which a static analysis is insufficient to explain the results. While
previous work generally focused on highly flexible wings, which
degraded flying qualities, this paper presents a full sweep through a
wide range of stiffness values and shows how decreasing the stiffness
can improve handling qualities, particularly in the longitudinal
modes. It is also shown how the introduction of a discrete structural
hinge can increase the range of short-period response characteristics
produced by configuration changes of the vehicle alone. The lateral

modes of the vehicle are not significantly impacted by the presence of
the compliant hinge. The reasons for this could stem from the
dihedral being kept fixed at a certain value. The lateral modes also
depend on the aerodynamics of the vertical tail, for which addition of
compliancy was not examined in this paper.
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