
JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 27, No. 5, September–October 2004

Linear Theory of a Rotating Internal Part Projectile
Configuration in Atmospheric Flight

Geoffrey Frost∗ and Mark Costello†

Oregon State University, Corvallis, Oregon 97331

Dynamic modeling of the atmospheric flight mechanics of a projectile equipped with an internal rotating disk
is investigated, and a modified projectile linear theory is established for this configuration. To model this type of
projectile requires alteration of several of the coefficients of the epicyclic dynamics leading to changes in the fast
and slow epicyclic modes. A study of the frequency and damping properties of the epicyclic modes is conducted
by the systematic variation of disk orientation, location, mass, and rotational speed. It is shown that the presence
of an internal rotating disk can causes substantial changes in the epicyclic dynamics, including instability, in some
configurations.

Nomenclature
aC/I = translational acceleration vector of two-body

system with respect to the inertial frame
aD/I = translational acceleration vector of disk mass

center with respect to the inertial frame
aP/I = translational acceleration vector of

projectile body mass center with respect
to the inertial frame

CDD = roll moment aerodynamic coefficient
for the projectile body

CL P = roll damping moment aerodynamic coefficient
for the projectile body

CM Q = pitch damping moment aerodynamic
coefficient for the projectile body

CN A = normal force aerodynamic coefficient
for the projectile body

CX0 = zero yaw axial force aerodynamic
coefficient for the projectile body

CX2 = yaw drag axial force aerodynamic
coefficient for the projectile body

CY P A = Magnus force aerodynamic coefficient
for the projectile body

FA = aerodynamic forces vector
FR = reaction force vector
HDx , HDy, HDz = angular momentum derivative vector

components of the projectile body
expressed in the body frame

HD/I = angular momentum vector of the disk body
about disk mass center with respect
to the inertial frame

HPx , HPy, HPz = angular momentum derivative vector
components of the projectile body
expressed in the body frame

HP/I = angular momentum vector of the projectile
body about projectile mass center
with respect to the inertial frame

H̃Dx , H̃Dy, H̃Dz = angular momentum derivative vector
components of the projectile body
expressed in the no-roll frame
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H̃Px , H̃Py, H̃Pz = angular momentum derivative vector
components of the projectile body
expressed in the no-roll frame

IB, JB, KB = body frame unit vectors
ID = mass moment of inertia of the disk body

about its mass center with respect
to the disk frame

IE = nominal mass moment of inertia of the
projectile body about its mass center
with respect to the body frame

II , JI , KI = inertial frame unit vectors
IN , JN , KN = no-roll frame unit vectors
IP = mass moment of inertia of the

projectile body about its mass center with
respect to the body frame

L A, MA, NA = total aerodynamic moment vector components
expressed in the body frame

L R, MR, NR = reaction moment components due to cross
product of distance vector from projectile
center of mass to disk center of mass
with reaction force vector expressed
in the body frame

L̃, M̃, Ñ = total aerodynamic moment vector components
expressed in the no-roll
frame

L̃ A, M̃A, ÑA = total aerodynamic moment vector components
expressed in the no-roll frame

L̃ R, M̃R, ÑR = reaction moment components due to cross
product of distance vector from projectile
center of mass to disk center of mass
with reaction force vector expressed
in the no-roll frame

MA = total aerodynamic moment vector
MR = reaction moment vector
mC = two-body system mass
m D = disk body mass
m E = nominal projectile mass
m P = projectile body mass
p, q, r = roll, pitch, and yaw components of the

angular velocity vector of projectile body
expressed in the body frame

p̃, q̃, r̃ = roll, pitch, and yaw components of the
angular velocity vector of projectile body
expressed in the no-roll frame

rC → D = distance vector from composite
body center of mass to disk center of mass

rC → P = distance vector from composite body center of
mass to projectile center of mass

rP → D = distance vector from projectile center
of mass to disk center of mass
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FROST AND COSTELLO 899

TD = transformation matrix from the disk frame
to the body frame

TN = transformation matrix from the body frame
to the no-roll frame

TP = transformation matrix from the body frame
to the inertial frame

u, v, w = translational velocity components
of the two-body system center
of mass resolved in the body frame

ũ, ṽ, w̃ = translational velocity components
of the two-body system center
of mass resolved in the no-roll frame

V = velocity magnitude
vC/I = translational velocity vector of two-body

system with respect to the inertial frame
WC = weight vector of two-body system
WD = weight vector of disk body
WP = weight vector of projectile body
X A, YA, Z A = aerodynamic force vector components

expressed in the body frame
XW , YW , ZW = projectile weight vector components expressed

in the body frame
X̃ , Ỹ , Z̃ = total external force components

on the projectile body expressed
in the no-roll frame

X̃ A, ỸA, Z̃ A = aerodynamic force vector components
expressed in the no-roll frame

X̃W , ỸW , Z̃W = projectile weight vector components expressed
in the no-roll frame

x, y, z = position vector components of the two-body
system center of mass expressed
in the inertial frame

xD, yD, zD = body frame components of distance vector
from projectile center of base to disk center
of mass

xE , yE , zE = nominal body frame components of distance
vector from projectile center of base
to projectile center of mass

xP , yP , zP = body frame components of distance vector
from projectile center of base to projectile
center of mass

xP A, yP A, zP A = no-roll frame components of distance vector
from projectile center of mass to center
of pressure

xP D, yP D, zP D = body frame components of distance vector
from projectile center of mass to disk center of
mass

xP M , yP M , zP M = no-roll frame components of distance vector
from projectile center of mass to Magnus
center of pressure

α = longitudinal aerodynamic angle of attack
αP/I = angular acceleration vector of projectile

body with respect to the inertial frame
β = lateral aerodynamic angle of attack
ρ = density of air
φ, θ, ψ = Euler roll, pitch, and yaw angles
φD, θD = disk reference frame orientation angles
ωB/I = angular velocity vector of projectile body with

respect to the inertial frame
ωD/I = angular velocity vector of disk body

with respect to the inertial frame
ωD/P = angular velocity vector of disk body with

respect to the projectile body frame
ωN/I = angular velocity vector of no-roll reference

frame with respect to the inertial frame

Introduction

M ANY conventional projectile configurations contain internal
parts that move slightly in-flight in some way, shape, or form.

Fuze mechanisms used on some indirect fire ammunition employ
a rotor that is permitted to move slightly with respect to the main

projectile body. Submunitions deployed from indirect fire projec-
tiles are keyed into place inside the round; however, small relative
motion between parts occurs. These configurations can experience
dynamic instability typified by large loss in range and large spin
decay.1 Soper evaluated the stability of a spinning projectile that
contains a cylindrical mass fitted loosely into a cylindrical cavity.2

The cylinder is constrained to spin with the main body projectile. It
is shown that an unstable coning motion exists in which spin decay
and cone angle grow proportionally to the friction coefficient be-
tween the mass and cavity and the maximum cant angle between the
mass and the projectile. With use of a similar geometric configura-
tion, Murphy developed a quasi-linear solution for a projectile with
an internal moving part.3 The solution provided an explanation of
the unusual flight behavior exhibited by four projectiles that all con-
tained parts with slight relative motion between components. Later,
D’Amico performed a detailed series of experiments where a pro-
jectile with a loose internal part was driven by the rotor of a freely
gimbaled gyroscope.4 The gyroscope yaw history and the orbital
motion of the loose part were measured and used to predict the mo-
ment and resulting yaw growth caused by the loose part. Hodapp5

expanded the work of Soper2 and Murphy3 by considering a projec-
tile configuration with a partially restrained internal member with
a mass center offset. Results of this study5 indicate that small mass
center offset of the partially restrained internal member can reduce
the instability caused by the loose internal part.

New projectiles configurations have emerged that contain multi-
ple moving parts that are fundamental to the basic design and opera-
tion of the projectile. The gimbal nose projectile configuration is an
example of one such configuration. It consists of a standard projec-
tile shape with a nose section that is free to rotate with respect to the
main body. Goddard6 originally conceived of this device for aircraft
control, and later Barrett and Stutts7 considered this mechanism
for active control of munitions. Schmidt and Donovan8 as well as
Costello and Agarwalla9 showed that dispersion of a fin-stabilized
direct fire projectile could be reduced by more than 50% using a
passive gimbal nose to reduce significantly aerodynamic jump. An-
other multiple component configuration is the dual-spin projectile,
which consists of forward and aft sections connected through a bear-
ing, which allows different spin rates for each section. Smith et al.10

used a dual-spin projectile for active control of an artillery shell
by mounting canards on the forward section of the projectile. The
forward section was roll stabilized to aid the functionality of the ca-
nards, whereas the aft section provided spin stability. Costello and
Peterson11 developed a linear theory for dual-spin projectiles that
predicts stability for this configuration, whereas Burchett et al.12 pre-
dicted swerve of a dual-spin projectile caused by lateral pulse jets.

An internal rotating disk is an important dynamic component of
some new projectile configurations. For example, a new concept for
generating real-time bomb damage information relies on releasing
a relatively small sensor projectile that is tethered to a parent bomb.
As the two projectiles separate, a reel on the parent munition spins.
In another application, active trajectory control is achieved by con-
trolling the spin rate of the external projectile body, thus, predictably
changing the aerodynamic loads. To implement this control concept
requires an internal rotating disk. In these cases, weapon system de-
signers require guidance on the effect of the rotating internal part as
well as guidance on how to configure such a system optimally. The
work reported here sheds light on these matters by first developing a
projectile linear theory specific to projectiles with an internal rotat-
ing disk. Unlike previous work, the model is valid for large disk to
projectile mass ratio, arbitrary orientation of the disk, and arbitrary
placement of the disk within the projectile. The effect of physical
parameters such as orientation, placement, mass, and speed of the
rotating disk on the epicyclic modes of vibration is examined.

Rotating Internal Part Projectile Dynamic Model
A projectile containing an axisymmetric rotating internal part

that spins at a constant rate � is considered, as shown in Fig. 1. The
mathematical model describing the motion of the projectile allows
for three translational and three rotational rigid-body degrees of
freedom. To develop the dynamic equations of motion for these
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900 FROST AND COSTELLO

Fig. 1 Position coordinates schematic of a rotating internal part
projectile.

Fig. 2 Attitude coordinates schematic of a rotating internal part
projectile.

six degrees of freedom, three separate reference frames are used as
shown in Fig. 1. The ground surface is used as an inertial reference
frame with KI positive down. A body frame is fixed on the projectile
at the mass center of the two-body system with IB positive out the
nose of the projectile. Because of the axisymmetric nature of the
rotating internal part, the mass center of the internal part is fixed
with respect to the body frame. The disk is considered to have a
known constant spin rate, and its axis of spin is specified in the
body frame by a set of direction cosine elements.

The three translational degrees of freedom are the three compo-
nents of the two-body, mass center position vector:

rO → C = xII + yJI + zKI (1)

A sequence of rotations from the inertial frame to the projectile
frame is defined by a set of body-fixed rotations that are ordered
in the conventional manner as shown in Fig. 2. The three rotational

Fig. 3 Rotating internal part projectile geometry.

degrees of freedom are the Euler roll angle φ, pitch angle θ , and
yaw angle ψ . In the normal process of simplifying the equations
of motion using projectile linear theory, an intermediate frame is
utilized, namely, the no-roll frame, defined as an intermediate frame
before roll angle rotation. Figure 3 shows the relative locations of
the projectile and disk centers of gravity and the projectile body
centers of pressure.

The kinematic differential equations define 6 of the 12 dynamic
equations needed to describe the motion of the states: x , y, z, ϕ, θ ,
and ψ . The no-roll variables, ũ, ṽ, w̃, p̃, q̃, and r̃ , are chosen for the
remaining 12 state variables. The transformation from the no-roll
frame N to the inertial frame I is






II

JI

KI





=





cθ cψ −sψ sθ cψ

cθ sψ cψ sθ sψ

−sθ 0 cθ










IN

JN

KN





= [TN ]






IN

JN

KN





(2)

whereas the transformation from the projectile body frame B to the
no-roll frame N is






IN

JN

KN





=





1 0 0

0 cφ −sφ

0 sφ cφ










IB

JB

KB





= [

T T
φ

]






IB

JB

KB





(3)

leading to the transformation from the body frame B to the inertial
frame I described by





II

JI

KI





=






cθ cψ sφsθ cψ − cφsψ cφsθ cψ + sφsψ

cθ sψ sφsθ sψ + cφcψ cφsθ sψ − sφcψ

−sθ sφcθ cφcθ











IB

JB

KB






= [TB]






IB

JB

KB





(4)

In the preceding equations and the equations to be shown later,
the standard shorthand notation for trigonometric functions is used:
sin(α) ≡ sα , cos(α) ≡ cα , and tan(α) ≡ tα .

The mass center velocity vector of the two-body system is defined
in each of the reference frames already discussed,

vC/I = ũIN + ṽJN + w̃KN = uIB + vJB + wKB = ẋII + ẏJI + żKI

(5)

as is the angular velocity vector of the projectile body,

ωB/I = p̃IN + q̃JN + r̃KN = pIB + qJB + rKB (6)

and the angular velocity vector of the no-roll reference frame,

ωN/I = −r̃ tθ IN + q̃JN + r̃KN (7)
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FROST AND COSTELLO 901

The angular velocity vector of the internal rotating part with respect
to the inertial frame is found by summing the angular velocity vector
of the projectile body with respect to the inertial frame with the
angular velocity vector of the internal rotating part with respect to
the projectile body frame,

ωD/I = ωB/I + ωD/B (8)

where the angular velocity vector of the internal rotating part with
respect to the projectile body frame is

ωD/P = nx�IB + ny�JB + nz�KB (9)

where





nx

ny

nz





=






cθD

sφD sθD

−cφD sθD





(10)

Applying the transformation given in Eq. (2) to the mass center
velocity components expressed in the no-roll reference frame yields






ẋ

ẏ

ż





=





cθ cψ −sψ sθ cψ

cθ sψ cψ sθ sψ

−sθ 0 cθ










ũ

ṽ

w̃





(11)

Equating the projectile angular velocity vectors described using no-
roll frame components and using Euler angle rates generates






φ̇

θ̇

ψ̇





=





1 0 tθ
0 1 0

0 0 1/cθ










p̃

q̃

r̃





(12)

The kinetic differential equations are derived by separating the
two-body system at the disk axle connection point and considering
the reaction forces and moments associated with each individual
part. A constraint force FR and a constraint moment MR , applied
at the disk center of gravity, couple the disk and projectile bodies.
Equations (13) and (14) give the translational kinetic differential
equations for each body,

m DaD/I = FR + WD (13)

m P aP/I = −FR + WP + FA (14)

Summing Eqs. (13) and (14) yields the expression for the transla-
tional dynamic equation of motion for the two-body system,

mC aC/I = FA + WC (15)

where

mC aC/I = m DaD/I + m P aP/I (16)

WC = WP + WD (17)

aC/I =
N dVC/I

dt
+ ωN/I × VC/I (18)

The constraint force is obtained by subtracting Eq. (14) from
Eq. (13),

FR = (aD/I − aP/I + FA/m P)[m Dm P/(m D + m P)] (19)

The acceleration of the mass center of the disk, aD/I , and the accel-
eration of the mass center of the projectile, aP/I , can be expressed
in terms of the acceleration of the composite body mass center by
using the formula for two points fixed on a rigid body.

aD/I = aC/I + αB/I × rC → D + ωB/I × (ωB/I × rC → D) (20)

aP/I = aC/I + αB/I × rC → P + ωB/I × (ωB/I × rC → P) (21)

After these expressions are substituted into Eq. (19), the constraint
force is expressed in the following manner:

FR = [αB/I × rP → D + ωB/I × (ωB/I × rP → D)

+ FA/m P ][m Dm P/(m D + m P)] (22)

The rotational kinetic equations of motion for the projectile and disk
bodies are given by

I dHD/I

dt
= MR (23)

I dHP/I

dt
= −MR − rP → D × FR + MA (24)

Summing the preceding two equations eliminates the reaction mo-
ment and forms the rotational kinetic equation for the two-body
system expressed in the body reference frame,

I dHP/I

dt
+

I dHD/I

dt
= −rP → D × FR + MA (25)

Unlike the kinetic translational equation of motion, it is easier to
form the rotational equation of motion in the body frame and later
convert it to the no-roll reference frame when it is expressed in
component form. Therefore, the angular momentum derivatives are
expressed as

I dHD/I

dt
=

BdHD/I

dt
+ ωB/I × HD/I (26)

I dHP/I

dt
=

BdHP/I

dt
+ ωB/I × HP/I (27)

The translational dynamic equation given in Eq. (15) is expressed
in the no-roll frame,






˙̃u
˙̃v
˙̃w





= 1

mC






X̃

Ỹ

Z̃





−





0 −r̃ q̃

r̃ 0 r̃ tθ
−q̃ −r̃ tθ 0










ũ

ṽ

w̃





(28)

where the weight force and aerodynamic loads expressed in the
no-roll frame are

FA = X̃ AIN + ỸAJN + Z̃ AKN (29)

WC = X̃W IN + ỸW JN + Z̃W KN (30)

so that





X̃

Ỹ

Z̃





=






X̃ A

ỸA

Z̃ A





+






X̃W

ỸW

Z̃W





(31)

where





X̃W

ỸW

Z̃W





= mC g






−sθ

0

cθ





(32)

The aerodynamic forces are described in the next section.
The body frame components of the rotational dynamics equation

of motion given by Eq. (25) can be written as

[ARD]






ṗ

q̇

ṙ





= {BRD} (33)
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902 FROST AND COSTELLO

where

ARD = IP + TD ID T T
D − mS SRPD SRPD (34)

BRD =






L A

MA

NA





− mS SRPD Sω Sω






xPD

yPD

zPD





− mS

m P
SRPD






X A

YA

Z A






− Sω IP






p

q

r





− TD ID T T

D Sω






nx�

ny�

nz�






− SωTD ID T T
D






p + nx�

q + ny�

r + nz�





(35)

SRPD =





0 −zPD yPD

zPD 0 −xPD

−yPD xPD 0



 (36)

[Sω] =





0 −r q

r 0 −p

−q p 0



 (37)

The transformation matrix from the disk reference frame to the
projectile reference frame is formed as





IB

JB

KB





=





cθD 0 sθD

sφD sθD cφD −sφD cθD

−cφD sθD sφD cφD cθD










ID

JD

KD





= [TD]






ID

JD

KD






(38)

To be consistent with projectile linear theory, Eq. (33) is converted
to the no-roll frame through multiplication of the equation by T T

φ .
Also, a change of variables is introduced from body frame angu-
lar velocity components to no-roll frame components. With these
conversions, Eq. (33) is expressed as

[ ÃRD]






˙̃p
˙̃q
˙̃r





= {B̃RD} (39)

where

ÃRD = T T
φ

(
IP + TD ID T T

D − mS SRPD SRPD

)
Tφ (40)

B̃RD =






L̃ A

M̃A

ÑA





− mS T T

φ SRPD Sω Sω






xPD

yPD

zPD





− mS

m P
T T

φ SRPD






X̃ A

ỸA

Z̃ A






− T T
φ Sω IP Tφ






p̃

q̃

r̃





− T T

φ TD ID T T
D Sω






nx�

ny�

nz�






− T T
φ SωTD ID T T

D Tφ






p̃

q̃

r̃





− T T

φ SωTD ID T T
D






nx�

ny�

nz�






− T T
φ

(
IP + TD ID T T

D − mS SRPD SRPD

)
Ṫφ






p̃

q̃

r̃





(41)

Tφ =





1 0 0

0 cφ sφ

0 −sφ cφ



 (42)

Ṫφ = ( p̃ + tθ r̃)





0 0 0

0 −sφ cφ

0 −cφ −sφ



 (43)

In the preceding cross product operator matrix Sω, the body frame
angular velocity components p, q, and r are replaced by p̃,
cφ q̃ + sφ r̃ , and −sφ q̃ + cφ r̃ , respectively.

Equations (11), (12), (28), and (39) provide 12 nonlinear differen-
tial equations that govern atmospheric flight of a projectile equipped
with an axisymmetric rotating internal component. With a given set
of initial conditions, these equations can be numerically integrated
forward in time.

Aerodynamic Forces and Moments
The equations of motion discussed earlier are largely driven by

the aerodynamic forces and moments exerted on the projectile body.
The aerodynamic loads consist of steady aerodynamic forces and
linear Magnus forces and are formulated separately,






X̃ A

ỸA

Z̃ A





=






X̃ S

ỸS

Z̃ S





+






X̃ M

ỸM

Z̃ M





(44)

The steady aerodynamic forces act at the center of pressure of the
projectile body and are






X̃ S

ỸS

Z̃ S





= −qα






CX0 + CX2α
2 + CX2β

2

CY 0 + CY B1β

CZ0 + CZ B1α





(45)

The Magnus force act at the Magnus force center of pressure, which
is different from the center of pressure of the steady aerodynamic
forces. Figure 3 shows the relative locations of the projectile body
centers of pressure.






X̃ M

ỸM

Z̃ M





= qα






0
p̃DCY P Aα

2V

− p̃DCY P Aβ

2V






(46)

The longitudinal and lateral aerodynamic angles of attack used in
Eqs. (45) and (46) are

α = tan−1(w̃/ũ) ∼= w̃/ũ, β = tan−1(ṽ/ũ) ∼= ṽ/ũ (47)

qα = (π/8)ρD2(ũ2 + ṽ2 + w̃2) (48)

Aerodynamic coefficients in Eqs. (45) and (46) depend on local
Mach number at the composite body mass center.

The externally applied moments on the projectile body found
on the right-hand side of the rotational kinetic equations contain
contributions from steady and unsteady aerodynamics and Magnus
moments,






L̃ A

M̃A

ÑA





=






L̃ S

M̃S

ÑS





+






L̃U

M̃U

ÑU





+






L̃ M

M̃M

ÑM





(49)

The steady aerodynamic moments are computed for the projectile
body with a cross product between the steady body aerodynamic
force vector and the distance vector from the projectile center of
gravity to the center of pressure. Magnus moments on the body
are computed in a similar way, with a cross product between the
Magnus force vector and the distance vector from the projectile
center of gravity to the Magnus center of pressure. The unsteady
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FROST AND COSTELLO 903

body aerodynamic moments provide a damping source for projectile
angular motion and are given by






L̃U

M̃U

ÑU





= γ̃α D






CDD + p̃DCL P

2V

q̃ DCM Q

2V

r̃ DCN R

2V






(50)

Air density is computed using the standard atmosphere.13

Rotating Internal Part Projectile Linear Theory
The preceding equations of motion in their current state are highly

nonlinear and whereas a solution, given an initial set of conditions,
may be obtained numerically, it is desirable to solve them with a
closed-form solution for increased understanding of the dynamic
behavior. Linear theory for symmetric rigid projectiles introduces
a series of assumptions that yield a refined set of linear differential
equations that can be solved in closed form. These equations form
the basis of classic projectile stability theory. This same set of as-
sumptions can be used to establish a linear theory for projectiles
containing an axisymmetric rotating internal part in atmospheric
flight. The necessary assumptions are as follows.

1) The variable is changed from no-roll, station line velocity u,
to total velocity V . V and u and their derivatives are related as

V =
√

ũ2 + ṽ2 + w̃2 (51)

V̇ = (ũ ˙̃u + ṽ ˙̃v + w̃ ˙̃w)/V (52)

2) The variables are changed from time t to dimensionless arc
length s. The dimensionless arc length, as defined by Murphy,14 is
given next and is measured in units of distance traveled,

s = 1

D

∫ t

0

V dτ (53)

Time and arc length derivatives of a dummy variable ζ are related
by

ζ̇ = (V/D)ζ ′ (54)

ζ̈ = (V/D)2(ζ ′′ + ζ ′V ′/V ) (55)

3) Euler yaw and pitch angles are small,

sθ ≈ θ, cθ ≈ 1, sψ ≈ ψ, cψ ≈ 1 (56)

4) Aerodynamic angles of attack are small,

α ≈ w̃/V β ≈ ṽ/V (57)

5) The effects of mass and inertia changes of a projectile on sta-
bility are well known. To evaluate properly the affects on stability
solely due to a rotating internal part, the total mass of the two-
component system is held constant and individual component mass
and inertia properties are appropriately modified. Beginning with
a symmetric projectile, a disk is removed from the rigid projectile
body and replaced with a rotating disk that has the same mass and
inertia properties as the removed portion. Hence, the two-body sys-
tem has its mass center along the axis of symmetry. For computing
aerodynamic loads, the velocity of the original rigid-body mass cen-
ter, along the axis of symmetry of the projectile, is used and not the
projectile body mass center, which for offset disk configurations, os-
cillates at the projectile spin rate. The shift in the projectile’s center
of gravity due to the addition of the internal part is






xP

yP

zP





= 1

m P






m E xE − m D xD

m E yE − m D yD

m E zE − m DzD





(58)

The projectile’s inertia matrix for various disk configurations is pop-
ulated by

IP = IE − m P





y2
P + z2

P xP yP xP zP

xP yP x2
P + z2

P yP zP

xP zP yP zP x2
P + y2

P





− TD ID T T
D − m D





y2
D + z2

D xD yD xDzD

xD yD x2
D + z2

D yDzD

xDzD yDzD x2
D + y2

D



 (59)

where

m P = m E − m D (60)

6) The projectile is aerodynamically symmetric.

CN R = CM Q (61)

CY 0 = CZ0 = 0 (62)

CY B1 = CZ B1 = CN A (63)

7) A flat fire trajectory is assumed, and the force of gravity is
neglected for stability analysis.

8) The quantities θ, ψ, q̃, r̃ , ṽ, and w̃ are small compared to V
and φ; therefore, the products of these small quantities and their
derivatives are negligible.

After application of these assumptions, the projectile linear theory
differential equations are obtained,

x ′ = D (64)

y′ =
(

D

V

)

ṽ + ψ D (65)

z′ =
(

D

V

)

w̃ − θ D (66)

φ′ =
(

D

V

)

p̃ (67)

θ ′ =
(

D

V

)

q̃ (68)

ψ ′ =
(

D

V

)

r̃ (69)

V ′ = − (ρSDCX0V )

2mC
(70)

p′ =
[

ρSD2(DCL P p̃ + 2CDD V )

4(IDX X + IP X X )

]

(71)






v′

w′

q ′

r ′






=







A 0 0 −D

0 A D 0

B C E −F

−C B F E












ṽ

w̃

q̃

r̃






+ FF (72)

Equations (64–72) are linear, except for the total velocity V , which
is retained in several of the equations. It is assumed that V changes
slowly with respect to the other state variables and is considered
to be constant where it appears in other dynamic equations. With
this assumption, the total velocity, the angle-of-attack dynamics,
and the roll dynamics all become uncoupled, linear-time-invariant
equations of motion.

Equation (72) is the matrix form of the epicyclic dynamic equa-
tions where FF is a periodic inhomogeneous forcing term. The
angle-of-attack stability of the projectile is largely determined by
the homogeneous equations. Note that the basic structure of the
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904 FROST AND COSTELLO

epicyclic dynamic equations of a rigid projectile are the same as
shown earlier. Differences in the epicyclic dynamics of both con-
figurations are contained in the coefficients B, C , E , and F . In the
most general case, where the disk is located off the axis of symmetry
and canted at an arbitrary angle, these coefficients are algebraically
lengthy. Although straightforward and computationally trivial to
compute, space limitations here prevent the most general form of
these coefficients to be listed. However, the Appendix provides these
coefficients for the special case of the disk located on and aligned
with the projectile axis of symmetry.

The four roots of the homogeneous characteristic equation shown
in Eq. (72) are given as

s =






1

2

[
A + E − i F

±
√

(A − E)2 + 4C D − F2 + 2i(AF − 2B D − E F)

]

1

2

[
A + E + i F

±
√

(A − E)2 + 4C D − F2 + 2i(E F + 2B D − AF)

]






(73)

Two complex roots are generated, which are typically called the
epicyclic fast and slow modes. These results are identical to con-
ventional rigid projectile analysis. Consequently, rotating internal
part projectile analysis can be approached in essentially the same
manner that rigid projectiles are analyzed.

Example Results
To examine the changes an internal rotating disk induces on

the dynamic behavior of a projectile, the following analysis doc-
uments how the fast and slow epicyclic modes change for vari-
ous rotating disk arrangements. Results are shown for a typical
155-mm spin-stabilized artillery shell having a nominal weight
of 94.88 lbf with a reference area of S = 0.20 ft2 and a ref-
erence diameter D = 0.51 ft. The nominal stationline, buttline,
and waterline distances to the projectile’s center of gravity are
xE = 1.06 ft, yE = 0.00 ft, and zE = 0.00 ft. The air density is spec-
ified at ρ = 1.75E−3 slugs · ft3, and aerodynamic coefficients are
CN A = 2.66, CY P A = −0.96, and CM Q = −27.7. The standard aero-
dynamic center of pressure and the aerodynamic center of Magnus
are located at the following distances along the stationline, butt-
line, and waterline xA = 1.76 ft, yA = 0.00 ft, and z A = 0.00 ft
and xM = 1.76 ft, yM = 0.00 ft, and zM = 0.00 ft. The moments
of inertia about the body axis are IE X X = 0.11, IEY Y = 1.40, and
IE Z Z = 1.40 slug · ft2. The nominal disk is 0.33 ft in diameter,
0.06 ft thick, and weighs 9.5 lbf. It is nominally located on the
projectile center of gravity and has the following inertia proper-
ties: IDX X = 0.0041, IDY Y = 0.0021, and IDZ Z = 0.0021 slug · ft2.
Euler angles of the projectile are ϕ = 0.00 rad, θ = 0.00 rad, and
ψ = 0.00 rad. The projectile has a forward velocity of ũ = 2710 ft/s
and a spin rate of p̃ = 1674.10 rad/s. The pitch and yaw rates and the
side velocities are all equal to zero. The disk spin rate and orientation
relative to the projectile are varied.

In the analysis to follow, the ratio of the disk mass to projectile
mass is dubbed the mass ratio MR , the ratio of the disk spin rate to
the projectile spin rate is call the spin ratio SR , the angle that the
disk is rotated from the projectile axis is given as the disk angle ϕD ,
and the angle that the disk spin axis is nutated from the projectile
axis is given as the disk angle θ D. The disk rotation and nutation
angles are defined in Fig. 1.

A mass ratio of 1/20 and a spin ratio of 10 were considered for
a system containing a disk located on the projectile center of grav-
ity. The orientation of the disk is located by a rotation of φD about
IB , followed by a rotation of θD about JD . Because the projectile
is symmetrical, the rotation angle φD of the disk has no physical
significance on the configuration of the system and cannot affect
the stability. Thus, the epicyclic modes are solely a function of the
nutation angle θD , which is the angle between the spin axes of the
disk and spin axes of the projectile. The angle between the spin

Fig. 4 System natural frequencies, mass ratio = 1/20, and spin ra-
tio = 10.

Fig. 5 Damping factors, mass ratio = 1/20, and spin ratio = 10.

axes of the disk and the spin axes of the projectile was varied over
a range from 0 to 360 deg, and the natural frequencies and damp-
ing ratio factors for this system were determined and are shown for
the fast and slow modes in Figs. 4 and 5. Figures 4 and 5 show
that the eigenvalues of the system’s epicyclic equations are depen-
dent on disk orientation. It is also shown that orientation angles
that affect a relatively large change in natural frequency have very
little effect on the damping of the system. The converse is true as
well. Moreover, Fig. 5 shows that if it is desired for this particu-
lar system to remain stable certain disk orientation angles must be
avoided.

The preceding study was repeated for a wide range of lateral disk
displacements, and the exact set of eigenvalues was obtained for all
positions. Thus, for a given disk-orientation the epicyclic dynamics
of the system are independent of the lateral placement of the disk.
In other words, no matter where the disk is placed with respect to
the projectile, for a given disk orientation and the same set of flight
conditions, the roots of the epicyclic equations will be exactly the
same.

The root locus for various mass ratios and spin ratios is shown in
Figs. 6–11. The disk nutation angle θD, is varied from 0 (diamond)
to 360 deg. The disk angle is defined in the inset of Fig. 6 for a
disk located off the projectile axis of symmetry in the buttline di-
rection (JB axis). Because the epicyclic dynamics are independent
of disk location, this lateral displacement was arbitrarily chosen
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FROST AND COSTELLO 905

Fig. 6 Root locus for mass ratio = 1/100 and spin ratio = 5: �, θD = 0,
360 deg; �, θD = 90 deg; �, θD = 180 deg; and ××, rigid projectile.

Fig. 7 Root locus for mass ratio = 1/10 and spin ratio = 5: �, θD = 0,
360 deg; �, θD = 90 deg; �, θD = 180 deg; and ××, rigid projectile.

Fig. 8 Root locus for mass ratio = 1/5 and spin ratio = 5: �, θD = 0,
360 deg; �, θD = 90 deg; �, θD = 180 deg; and ××, rigid projectile.

Fig. 9 Root locus for spin ratio = 1/2 and mass ratio = 1/10: �, θD = 0,
360 deg; �, θD = 90 deg; �, θD = 180 deg; and ××, rigid projectile.

Fig. 10 Root locus for spin ratio = 1 and mass ratio = 1/10: �, θD = 0,
360 deg; �, θD = 90 deg; �, θD = 180 deg; and ××, rigid projectile.

Fig. 11 Root locus for spin ratio = 10 and mass ratio = 1/10: �, θD = 0,
360 deg; �, θD = 90 deg; �, θD = 180 deg; and ××, rigid projectile.
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906 FROST AND COSTELLO

as a representative case to study the effects that varying the mass
and spin ratios have on the epicyclic dynamics. The circle indicates
the eigenvalues for a disk angle of 90 deg, the square for a disk
angle of 180 deg, and the bold × the location of the eigenvalues
determined from a similar rigid artillery round without a rotating
internal part. These conventions are used throughout. In Figs. 6–11,
the epicyclic modes travel from the diamond to the square as the
disk angle is increased from 0 to 180 deg and march back up the
same path toward the diamond as the disk angle is further increased
from 180 to 360 deg. In Fig. 6, it can be seen that a disk of mass
ratio 1/100 slightly affects the projectile fast and slow modes at
angles other than 90 deg. The effect on the epicyclic dynamics of
the system of varying the disk orientation for three different mass
ratios with a spin ratio of 5 is demonstrated in the root-locus plots
shown in Figs. 8–10. Comparison of Figs. 8–10 reveals that increas-
ing the mass ratio increases the effect that the spinning disk has on
the epicyclic dynamics. As shown in Fig. 8, when the mass ratio is
sufficiently large, the fast mode can become unstable for large disk
angles greater than 90 deg. In this case, spin stability of the complete
round is adversely impacted by the IB component of disk angular
velocity in the opposite direction of projectile spin. Also note that
the mass ratio has very little effect on the stability of the system for
a disk angle of 90 deg. For disk angles greater than 180 deg, the
eigenvalues march back along the same path toward 0 deg. This is
expected because for a disk located on the projectile axis of sym-
metry the disk angles from 0 to 180 deg relative to the projectile
are equivalent to the angles from 180 to 360 deg with the direction
of spin reversed.

Figures 9–11 are root-locus plots obtained by varying the disk
angle for three different spin ratios with a disk to projectile mass ratio
of 1/10. When Figs. 9–11 are compared, it is shown that decreasing
spin ratio diminishes the effect that a spinning disk of a given mass
has on the epicyclic modes. Increasing the spin ratio increases the
dynamic effects and is capable of driving the system unstable for
certain disk angles. Comparison of Figs. 6 and 9 and comparison of
Figs. 8 and 11 show that the same dynamic effects can be achieved
with either mass ratio or spin ratio. Note that if the product MR SR

is held constant the fast and slow modes do not change with disk
location nor do they change for the same set of disk orientations.
Figs. 6–11 also demonstrate that a disk of any mass ratio, spinning
in the same direction as the projectile, that is, disk angle < 90 deg,
tends to stabilize the fast mode of the system while destabilizing
the slow mode. Disk angles of greater than 90 up to 180 deg have
the opposite effect. However, for large spin ratios and large mass
ratios, the movement of the modes is much greater per increase in
disk angle. Note that the same plots, as those in Figs. 6–11, would
be generated for the same conditions no matter where the disk was
placed with respect to projectile body.

Conclusions
The equations of motion for a projectile containing an axisym-

metric rotating internal disk that spins at a constant rate have been
developed. The model allows for the disk to be located off the axis of
symmetry of the projectile and oriented at arbitrary angles relative
to the projectile axis of symmetry. Projectile linear theory has been
modified to accommodate projectile configurations that contain an
internal rotating disk. The addition of an internal rotating disk al-
ters several of the coefficients in the epicyclic dynamic equations
leading to modified fast and slow epicyclic modes.

With the use of modified projectile linear theory, the effect of disk
orientation, location, mass, and speed is systematically studied. For
a specified mass and spin ratio, the orientation of the disk affects
the dynamics of the system; however, the location of the disk has no
effect on the dynamics of the system. If the mass ratio times the spin
ratio is held constant, then the same epicyclic modes are produced
for a given set of disk orientations.

Appendix: Special Case Epicyclic Coefficients
Application of the linear theory assumptions to the simplified

system of a projectile containing a rotating internal part located on

the projectile axis of symmetry at a disk angle ψD equal to 0 deg
yields the coefficients of the epicyclic equations as

A = −ρSDCN A

2mC
(A1)

B =
(

ρSD

2mC

)(
mC D

ICY Y

){
[xP M − xPD(m D/mC )]CY P A p̃

2V

}

(A2)

C =
(

ρSD

2mC

)(
mC D

ICY Y

){
[xP A − xPD(m D/mC )]CN A

2D

}

(A3)

D = D (A4)

E =
(

ρSD

2mC

)(
mC D2

ICY Y

)
CM Q

2
(A5)

F =
(

D

V

)
IP X X p̃ + IDX X ( p̃ + �)

ICY Y
(A6)

Magnus force is assumed to be small in comparison to other aerody-
namic forces and is dropped from Eqs. (A1–A6). However, because
of the magnitude amplification resulting form the cross product be-
tween Magnus force and its respective moment arm, the Magnus
moment is retained in Eq. (A2). The periodic forcing function FF

reduces to zero for the simplified case. The equations for the sim-
plified system presented are essentially the same as those derived
for a dual-spin projectile by Costello and Peterson.11 They are iden-
tical if the aerodynamic coefficients applied on the aft section of a
dual-spin projectile are neglected.

References
1Murphy, C., “Symmetric Missile Dynamic Instabilities,” Journal of

Guidance, Control, and Dynamics, Vol. 4, No. 5, 1981, pp. 464–471.
2Soper, W., “Projectile Instability Produced by Internal Friction,” AIAA

Journal, Vol. 16, No. 1, 1978, pp. 8–11.
3Murphy, C., “Influence of Moving Internal Parts on Angular Motion of

Spinning Projectiles,” Journal of Guidance, Control, and Dynamics, Vol. 1,
No. 2, 1978, pp. 117–122.

4D’Amico, W., “Comparison of Theory and Experiment for Moments
Induced by Loose Internal Parts,” Journal of Guidance, Control, and Dy-
namics, Vol. 10, No. 1, 1987, pp. 14–19.

5Hodapp, A., “Passive Means for Stabilizing Projectiles with Partially
Restrained Internal Members,” Journal of Guidance, Control, and Dynamics,
Vol. 12, No. 2, 1989, pp. 135–139.

6Goddard, R., “Apparatus for Steering Aircraft,” U.S. Patent 2594766,
April 1952.

7Barrett, R., and Stutts, J., “Modeling, Design, and Testing of a Barrel-
Launched Adaptive Munition,” Proceedings of the 4th Annual Society of
Photo-Optical Engineers Symposium on Smart Structures, Society of Photo-
Optical Engineers, New York, 1997.

8Schmidt, E., and Donovan, W., “Technique to Reduce Yaw and Jump
of Fin-Stabilized Projectiles,” Journal of Spacecraft and Rockets, Vol. 35,
No. 1, 1998, pp. 110, 111.

9Costello, M., and Agarwalla, R., “Improved Dispersion of a Fin Sta-
bilized Projectile Using a Passive Moveable Nose,” Journal of Guidance,
Control, and Dynamics, Vol. 23, No. 5, 2000, pp. 900–903; Errata, Vol. 25,
No. 2, 2002, p. 414.

10Smith, J., Smith, K., and Topliffe, R., “Feasibility Study for Application
of Modular Guidance and Control Units to Existing ICM Projectiles,” Final
Technical Report, Contractor Rept. ARLCD-CR-79001, U.S. Army Arma-
ment Research and Development Command, Picatinny Arsenal, Dover, NJ,
1978.

11Costello, M., and Peterson, A., “Linear Theory of a Dual Spin Projec-
tile in Atmospheric Flight,” Journal of Guidance, Control, and Dynamics,
Vol. 23, No. 4, 2000, pp. 789–797.

12Burchett, B., Peterson, A., and Costello, M., “Prediction of Swerving
Motion of a Dual-Spin Projectile with Lateral Pulse Jets in Atmospheric
Flight,” Mathematical and Computer Modeling, Vol. 35, No. 7–8, 2002,
pp. 821–834.

13Von Mises, R., Theory of Flight, Dover, New York, 1959, Chap. 1.
14Murphy, C. H., “Free Flight Motion of Symmetric Missiles,” U.S. Army

Research Lab., Rept. 1216, Aberdeen Proving Ground, MD, July 1963.

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

Ju
ly

 2
3,

 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.1

11
5 


