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A nonlinear model predictive control strategy is developed and subsequently specialized to autonomous aircraft

that can be adequately modeled with a rigid 6-degrees-of-freedom representation. Whereas the general air vehicle

dynamic equations are nonlinear and nonaffine in control, a closed-form solution for the optimal control input is

enabledby expandingboth the output and control in a truncatedTaylor series. The closed-form solution for control is

relatively simple to calculate and well suited to the real time embedded computing environment. An interesting

feature of this control law is that the number of Taylor series expansion terms can be used to indirectly penalize

control action. Also, ill conditioning in the optimal control gain equation limits practical selection of the number of

Taylor series expansion terms. These claims are substantiated through simulation by application of the method to a

parafoil and payload aircraft as well as a glider.

Nomenclature

b = span
c = chord
d = control flap width
FA = aerodynamic force coefficient vector
Fc = aerodynamic control force coefficient matrix
I = inertia matrix of system with respect to its mass

center
IB, JB, KB = body frame unit vectors
II , JI , KI = inertial frame unit vectors
L,M, N = aerodynamic moment components in the body

reference frame
MA = aerodynamic moment coefficient vector
Mc = aerodynamic control moment coefficient matrix
Mi = relative degree for the ith output
p, q, r = components of angular velocity of the system in

body reference frame
Q = diagonal tracking error weighting matrix
qi = tracking error weight on the ith diagonal of Q
Ri = number of Taylor expansion terms in the ith

output and desired trajectory approximation
Si = number of Taylor expansion terms in the ith

control approximation
SR = reference area
u = control vector
ub, vb, wb = components of velocity vector of the system mass

center in the body frame

VA = total aerodynamic velocity of the parafoil and
payload system

X, Y, Z = aerodynamic force components in the body
reference frame

xI , yI , zI = components of position vector of the system mass
center in an inertial frame

�, �,  = Euler roll, pitch, and yaw angles of system

I. Introduction

U nmanned air vehicles (UAVs) are providing improved capa-
bility in performing a diverse set of military missions such as

reconnaissance, targeting, and civilianmissions such as border patrol
and environmental sensing. More aggressive use of UAVs promises
to yield new capability such as adaptive battlefield communication
networks, autonomous equipment delivery, flexible autonomous
traffic monitoring, and massively parallel autonomous search and
rescue. A key element in these systems in the autonomous flight con-
trol system. Many different control strategies have been developed
specifically for highly nonlinear dynamic systems such as UAVs
including feedback linearization, sliding-mode control, and fuzzy
logic [1–3].

Model predictive control laws use a dynamic model of the plant to
project the state into the future and subsequently use the estimated
future state and the desired future state to determine control action.
This control technique has been successfully applied to many
different dynamic systems.

In standard linear model predictive control, the plant is modeled
as a discrete linear system [4]. For the linear case when a finite
horizon quadratic cost function is minimized, the optimal control
sequence can be solved in closed form. When the plant is nonlinear,
the optimal control sequence is, in general, not possible to obtain in
closed form. However, in some special cases, closed-form optimal
control sequences are possible. To solve these types of nonlinear
optimal control problems requires difficult and laborious numerical
optimization algorithms. An approach for solving the optimal
problem was given by Chen and Allgöwer [5]. However, significant
numerical computations are still required for all but the simplest
cases and are not practical for real time implementation. Another
approach is based on solving the state-dependent Ricatti equation
[6,7]. The state-dependent Ricatti equation technique solves the
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nonlinear problemby satisfying the algebraic Ricatti equation at each
time step. However, thismethod also requires a significant amount of
online iterative computations and is not feasible for many real time
applications. Nonlinear model-based controllers with increased
efficiency have been considered where predicted control moves are
centered about an optimal control law. The predicted optimal control
law is then continuously modified at future times to ensure an
appropriate control [8–10]. This process allows the majority of
computations to be calculated offline. Improvements on standard
receding horizon controllers for nonlinear systems have been
established by Magni et al. [11]. They demonstrated that using two
distinct horizons, a prediction horizon and a shorter control horizon,
can increase the domain of attraction for short control horizons. A
suboptimal nonlinear model predictive control (NMPC) technique
also has been proposed by Xin and Balakrishnan [12] that rewrites
the original equation in a linearlike form and solves the Hamilton–
Jacobi–Bellman equation by power series expansion; however, it is
limited to control affine systems. Suboptimal NMPC techniques for
nonaffine systems have been proposed by Patwardhan et al. [13] as
well as Patwardhan and Madhavan [14]. An algorithm proposed by
Rajendra et al. [15] works for nonaffine systems and requires less
computation than othermethods, but an iterative solution is required.
An ideal NMPC algorithm displays the closed-form solution
properties of linear MPC while being applicable to a wide range of
nonlinear systems. Chen [16] developed a NMPC technique that can
be applied to a general nonlinear plant by using Taylor expansion of
the plant output and control. It is assumed that control weighting is
not in the performance index and that control order is the difference
between the Taylor series expansion and the relative degree of the
system. This technique was developed for a general nonaffine single
input single output system.

The work reported here presents a nonlinear model predictive
control law in the same spirit as Chen’s algorithm except it is cast in a
MIMO setting. After establishing the general algorithm it is
specialized to air vehicles that are adequately described dynamically
with a rigid 6-degrees-of-freedom representation. It is shown that a
penalty for control can be implemented through the selection of the
number of Taylor series expansion terms even with control being
absent in the cost function. The methodology is successfully
exercised on two systems, namely, a parafoil and payload aircraft
along with a glider. Performance characteristics of the control
strategy are presented through dynamic simulation results of both air
vehicles.

II. Nonlinear Model Predictive Control Algorithm

Consider a general nonlinear system of the form as given in Eq. (1)
with N inputs and P outputs. Notice that the assumed system is not
affine in control.

_x� f�x; u� y� h�x� (1)

For a nonlinear system, it is well known that after a specific
number of derivatives of the output, control inputs appear. The
relative degreeMi is the number of time derivatives of the ith output
required for control to appear. When the control appears, it generally
appears in a nonlinear manner. If successive time derivatives are
obtained after the relative degree, time derivatives of controlwill also
appear. Time derivatives of an output can be expressed as in Eq. (2)
when the number of time derivatives of the output is less than Mi,
where �ij is a function of only the state vector when j is less than the
relative degree.

djyi
dtj

� �ij (2)

Note that �iMi
is a function of both the state and the control. In

general, when j is greater than the relative degree, the output can be
expressed as in Eq. (3).

djyi
dtj

� �ij � �i1
d�Mi�j� _u1
dt�Mi�j� � � � � � �iN

d�Mi�j� _uN
dt�Mi�j� (3)

Assume the input and output are sufficiently differentiable with
respect to time so that the input equations can be approximated by a
Taylor series of order Ri, where Ri � Mi. The output equations are
approximated by Taylor series of order S� Ri �Mi, where each Ri
is selected so that S is the same for all output equations.

yi�t� �� � yi�t� � �
dyi
dt

� . . .� �Ri

Ri!

dRiyi
dtRi

(4)

ui�t� �� � ui�t� � �
dui
dt

� . . .� �S

S!

dSu

dtS
(5)

Rather than solving the control input function ui�t� over the
control horizon, the control is parameterized with its S derivatives.
Because ui�t� is not required to appear in the state equations in a
linear manner, it can be considered to be a state variable. This
converts determination of a continuous function for control into
determination of a finite and relatively small number of discrete
parameters to determine control. Subsequently this converts the
resulting optimal control problem into a discrete parameter
optimization problem. The parameters to be determined for the
optimal control problem then become

Ui � dui
dt

d2ui
dt2

� � � dSui
dtS

h i
T

(6)

�U� U1 U2 � � � UN
� �

T (7)

Assuming that parameters in Eq. (6) defining the control sequence
are known, the control is expressed in Eq. (8).

ui�t� �� �
Z �

dui
dt

� �
d2ui
dt2

� . . .� �S�1

�S � 1�!
dSui
dtS

�
d� (8)

In practical applications the control is only needed near the current
time (�� 0). In this case, only the first derivative is required to
determine the optimal control input.

ui�t2� �
dui
dt

�t2 � t1� � ui�t1� (9)

To develop compact expressions for the control input, the Taylor
series expansion for the output in Eq. (4) are written in as

yi�t� �� � TiYi (10)

Ti � 1 �
1!

�2

2!
� � � �Ri

Ri!

h i
(11)

Yi � yi�t� dyi
dt

� � � dRi yi
dtRi

h i
T

(12)

Consider the entire output vector, approximated by a Taylor series
up to order Ri (possibly different orders for each output).

y�t� �� �

T1 0 � � � 0

0 T2
. .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 Tp

2
66664

3
77775

8>>><
>>>:

Y1
Y2
..
.

YP

9>>>=
>>>;

� TY (13)

Thematrix �T has dimensions of 	P 
 V�, whereV �P
N
i�1 Ri. The

desired trajectory is approximated in the same manner.

yD�t� �� � TYD (14)
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The tracking error can now be formed and expressed in compact
notation

e�t� �� � �YD�t� �� � �Y�t� �� � �T� �YD � �Y� (15)

Inmodel predictive control, a quadratic cost function isminimized
over a finite horizon.

J � 1

2

Z
T2

T1

e�t� ��TQe�t� �� d�

� 1

2

Z
T2

T1

� �YD � �Y�T �TTQ �T� �YD � �Y� d� (16)

Tracking error cost is weighted with the possibly time-dependent
positive definite matrixQ. Selecting the components ofQ to be time
varying allows initial or final tracking performance to be more

heavily weighted. Because only �T, and possiblyQ, depend on �, the
cost function can be rewritten in Eq. (17).

J � 1

2
� �YD � �Y�T�� �YD � �Y� (17)

The matrix �i is given in Eq. (18) for a constant diagonal Q
matrix.

�i � qi

Z
t2

t1

TTi Ti d�

� qi

t2�t1
�1�0!0!

t2
2
�t2

1

�2�0!1! . . .
t
Ri�1

2
�tRi�1

1

�Ri�1�0!Ri!
t2
2
�t2

1

�2�1!0!
t3
2
�t3

1

�3�1!1!
t
Ri�2

2
�tRi�2

1

�Ri�2�1!Ri!� � � � � � � � � � � �
t
Ri�1

2
�tRi�1

1

�Ri�1�Ri!0!
tR�2
2

�tR�2
1

�Ri�2�Ri!1! � � � t
2Ri�1

2
�t2Ri�1

1

�2Ri�1�Ri!Ri!

2
66664

3
77775 (18)

��
�1 0

�2

. .
.

0 �P

2
6664

3
7775 (19)

Note that thematrix� can be computed in closed form and stored.

For the parameters �U to be an optimal solution, the cost function in
Eqs. (17–19) must satisfy the gradient condition

@J

@ �U
��� �YD � �Y�T� @ �Y

@U
� 0 (20)

The optimal control input is determined by considering Eq. (20).

Partition �Y, �YD, and @ �Y=@ �U into upper and lower sections as shown
in Eqs. (21–23).

Yi �
�
YUi
YLi

�
�

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

�i0�x�
..
.

�iMi�1�x�
�iMi

�x; u1�N�
�

�iMi�1�x; u1�N� � �i1�x� _u1 � � � � � �iN�x� _uN
..
.

�iRi�x; u1�N; . . . ; d�S�1�u1�N=dt�S�1�� � �i1�x� d
Su1
dtS

� � � � � �iN�x� d
SuN
dtS

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(21)

@Yi
@Uj

�

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

0 0 � � � 0

0 0 ..
.

..

. ..
. . .

.

0 0 � � � 0

� � � �
�i1 0 0 0
@�i

Mi�2

@u1
j

�i1 0 0

..

. . .
.

0
@�i

Ri

@u1
j

@�i
Ri

@u2
j

� � � �i1

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

�
�

0

��
i1

�
(22)

@ �Y

@ �U
�

0 0 � � � 0

��
11 ��

12 � � � ��
1N

0 0 � � � 0

��
21 ��

22 � � � ��
2N

..

.

0 0 � � � 0

��
P1 ��

P2 � � � ��
PN

2
666666666666664

3
777777777777775

(23)

In a similar manner partition� to be conformal with the vectors �Y
and �YD.

��

�1
11 �1

12

0

�1
21 �1

22

. .
.

�P
11 �P

12

0

�P
21 �P

22

2
6666666664

3
7777777775

(24)

The format of @ �Y=@ �U and� allows for their multiplication to be
written in compact form.

�
@ �Y

@ �U
�

�1
12 0 0

. . .

�1
22 0 0

0 �2
12

0 �2
22

..

. . .
.

0 0 �P
12

. . .

0 0 �P
22

2
66666666666664

3
77777777777775

��
11 ��

12 � � � ��
1N

��
21 ��

22 � � � ��
2N

..

. ..
. . .

. ..
.

��
P1 ��

P2 � � � ��
PN

2
6664

3
7775

��RdY

(25)

With the selection of Ri such that the number of Taylor expansion
terms in the control approximation for each control is equal and the
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system is square, i.e., the number of inputs and outputs are equal,
dY is a square S 
 P matrix and �R has dimensions of
�V � P� 
 �S 
 P�. The equivalent optimal condition is then
expressed as follows.

� �YD � �Y�T�RdY � 0 (26)

Where dY�1 exists, we have the following condition.

� �YD � �Y�T�R � 0 (27)

Because of the block structure�R can be expanded as in Eq. (28).
The resulting P conditions for optimality are shown in Eq. (29).

��
YUDi
YLDi

�
�
�
YUi
YLi

��
T
�
�i

12

�i
22

�
� 	0� (28)

YLi � ��i
22��1��i

12�T�YUDi � YUi � � YLDi (29)

If we are interested only in the current control input, then _u is the
only derivative requiredwhich is thefirst component ofYLi . Denoting
the first row of ��i

22��1��i
12�T as Ki and evaluating the first

component of YLi the optimal solution for the first time derivative of
the control u is given in Eqs. (30–37).

B�
�11 � � � �11

..

. . .
. ..

.

�P1 � � � �PN

2
64

3
75 (30)

A� �1M1�1 � � � �NMP�1

� �
T (31)

YL1D � YLD1�1� � � � YLDP�1�
� �

T (32)

YUD �
YUD1
..
.

YUDP

2
64

3
75 (33)

YU �
YU1
..
.

YUP

2
64

3
75 (34)

UC � _u1�t� � � � _uN�t�
� �

T (35)

K �

K1 0 � � � 0

0 K2
. .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 KP

2
66664

3
77775 (36)

Using this notation, the MIMO control law is

UC � B�1	KT�YUD � YU� � YL1D � A� (37)

In the case of a SISO system, Eq. (37) reduces to the following
scalar result for the optimal control derivative (13).

_u� 1

�M�1

�
K�YUD � YU� � dM�1yD

dtM�1
� �M�1

�
(38)

III. Application to a Rigid Air Vehicle Model

Many air vehicles can be modeled as a rigid body possessing six
degrees of freedom (DOF) including three inertial position
components of the system mass center as well as the three Euler
orientation angles. Kinematic equations of motion for the general
system are provided in Eqs. (39) and (40).

8<
:

_xI
_yI
_zI

9=
;� RTIB

8<
:
ub
vb
wb

9=
; (39)

8<
:

_�
_�
_ 

9=
;�

1 s�t� c�t�
0 c� �s�
0 s�=c� c�=c�

2
4

3
5
8<
:
p
q
r

9=
;� KRM! (40)

The matrix RIB represents the transformation matrix from an
inertial reference frame to the body reference frame.

RIB �
c�c c�s �s�

s�s�c � c�s s�s�s � c�c c�s�
c�s�c � s�s c�s�c � s�c c�c�

2
4

3
5 (41)

The common shorthand notation for trigonometric functions is
employed where sin��� 
 s�, cos��� 
 c�, and tan��� 
 t�. The
dynamic equations of motion are provided in Eqs. (42) and (43).

8<
:

_ub
_vb
_wb

9=
;� 1

m

8<
:
X
Y
Z

9=
;� g

8<
:

�s�
s�c�
c�c�

9=
; �

0 �r q
r 0 �p
�q p 0

2
4

3
5
8<
:
ub
vb
wb

9=
;
(42)

8<
:

_p
_q
_r

9=
;� I�1

8<
:
L
M
N

9=
; �

0 �r q
r 0 �p
�q p 0

2
4

3
5IT

8<
:
p
q
r

9=
;

0
@

1
A (43)

Where 8<
:
X
Y
Z

9=
;� 1

2
�SRV

2
A�FA � FCu� (44)

8<
:
L
M
N

9=
;� 1

2
�SRV

2
A�MA �MCu� (45)

8<
:

_L
_M
_N

9=
;� �SRVA _VA�MA �MCu� �

1

2
�SRV

2
A� _MA � _MCu�MC _u�

(46)

A common goal of air vehicles is to track desired roll, pitch, and
yaw angles. The output for an angle tracking controller is given in
Eq. (47).

y� � �  
� �

T (47)

The relative degree of each output is 2; therefore three derivatives
of the output equations are required. The first derivative of the output
is Eq. (40), the second derivative is not shown, and the third
derivative follows:

y
:::� 2 _KRM _!� KRM �!� �KRM! (48)

The matrix B in Eq. (30) and the vector A in Eq. (31) are found to
be

A� 2 _KRM _!� �KRM!� KRMI
�1
�
�SRVA _VA�MA �MCu�

� 1

2
�SRV

2
A� _MA � _MCu� � S _!I! � S!I _!

�
(49)

B� 1

2
�SRV

2
AKRMI

�1MC (50)

Using Eqs. (48) and (49) we can solve for the desired control
derivatives by substitution into Eq. (37).
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UC � 2

�SRV
2
A

M�1
C

�
IK�1

RM 	YL1D � K�YUD � YU� � 2 _KRM _! � �KRM!�

� �SRVA _VA�MA �MCu� �
1

2
�SRV

2
A� _MA � _MCu�

� S _!I!� S!I _!

�
(51)

The matrices S! and S _! are the skew-symmetric cross product
operators on! and _!, respectively. The quantitiesFA andFC which
include aerodynamic force coefficients do not directly appear in

Eq. (51) but will enter in through _VA. Two matrix inversions are
required in the control law and fortunately one is easily determined in
closed form:

K�1
RM �

�s� 0 1

s�c� c� 0

c�c� �s� 0

2
4

3
5 (52)

It is clear from Eq. (51) that the optimal control derivativesUC are
valid for a general rigid air vehicle where only the force and moment
equations depend on the specific system. The optimal control
derivatives UC can be found for a specific system provided that
aerodynamic expressions for FA, FC,MA, andMC are known.

IV. Parafoil and Payload Aircraft Application

A parafoil and payload controlled by left and right parafoil brake
deflection can be modeled as a SISO system where heading angle is
the output and asymmetric brake deflection �a is the control. The
parafoil and payload shown in Fig. 1 can be represented as a 6-DOF
system with aerodynamic forces acting at the total system mass
center and aerodynamic moments about the systemmass center. The
aerodynamic loads are given in Eqs. (53) and (54). Apparent mass
effects which become negligible in near steady-state conditions have
been neglected [17].8>><
>>:
X

Y

Z

9>>=
>>;
� 1

2
�SRVA�CL0 �CL���

8>><
>>:
wa

0

�ua

9>>=
>>;
� 1

2
�SRVA�CD0 �CD�2�

2

�CD�a�a�

8>><
>>:
ua

va

wa

9>>=
>>;

(53)

8<
:
L
M
N

9=
;� 1

2
�SRV

2
A

8>><
>>:

Cl�b�� Clpb
2p

2VA

Cm0c� Cm�c�� Cmqc
2q

2VA
Cnrb

2r
2VA

9>>=
>>;

�

8><
>:

Cl�ab
d

0
Cn�ab
d

9>=
>;�a

2
664

3
775

(54)

Because of the symmetry of the parafoil system the inertia matrix
takes the form

I �
IXX 0 IXZ
0 IYY 0

IXZ 0 IZZ

2
4

3
5 (55)

I�1 �
IXXI 0 IXZI
0 IYYI 0

IXZI 0 IZZI

2
4

3
5 (56)

For a SISO system the control derivatives are given in Eq. (38).
The parafoil system has relative degree of 2, requiring three
derivatives of the output equation to find �3 and �3. Taking the three

derivatives of the output and writing _L, _M, and _N in compact form, y
:::

can be written in the desired form of Eq. (3) with �3 and �3 given in
Eqs. (60) and (61).

8<
:

_L
_M
_N

9=
;�

8<
:

_L�
_M�
_N�

9=
;�

8<
:

_L�
_M�

_N�

9=
; _u (57)

8<
:

_L�
_M�
_N�

9=
;� 1

2
�SR

8>><
>>:

2VA _VACl�b�� V2
ACl�b _��

_VAClpb
2p

2
� VAClpb

2 _p

2
� 2VA _VACl�a b�a

d

2VA _VACm0c� 2VA _VAcCm��� V2
AcCm� _��

_VACmqc
2q

2
� VACmqc

2 _q

2
_VACnrb

2r
2

� VACnrb
2 _r

2
� 2VA _VACn�a b�a

d

9>>=
>>;

(58)

8><
>:

_L�
_M�

_N�

9>=
>;� �SRb

2d

8<
:
V2
ACl�a
0

V2
ACn�a

9=
; (59)

�3 �
�
1

c�

��
�S� _�2q� c� ��q� 2c� _� _q�

_�
2
S�q

c2�
� t� ��S�q� t� _�c� _�q� t� _�S� _q � c� _�2r � S� ��r � 2S� _�q _r�
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fIXZI 	 _L� � �IYY � IZZ�� _qr� q _r� � IXZ� _pq� p _q��
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�
IYYI 	 _M� � �IZZ � IXX�� _pr� p _r� � 2IXZ�p _p � r _r�� (60)

�3 �
�
c�
c�

�
�IXZI _L� � IZZI _N�� �

�
S�
c�

�
IYYI _M� (61)

The optimal solution for the first time derivative of the control �a
given in Eq. (38) is now found for the parafoil and payload system.

For _�a to be finite it must be verified that�3 is not zero throughout the
expected flight envelope, i.e., the roll angle �must not be��=2 and
_L�, _M�, and _N� are not all zero. It is clear from Eq. (59) that two

conditions could make _L� and _N� zero: VA being equal to zero and
the aerodynamic control coefficientsCl�� andCn�� both equal to zero.
Both cases correspond to the parafoil being uncontrollable.

To exercise the preceding algorithm for an example parafoil and
payload system, the preceding system of equations describing the
parafoil and payload aircraft are numerically integrated using a
fourth-order Runge–Kutta algorithm to generate trajectories of the
system. Simulations under different conditions are generated so that
performance of the nonlinear model predictive controller can be
evaluated. The physical parameters used for the parafoil and payload
aircraft in simulations are provided in Table 1, whereas the
aerodynamic coefficients are provided in Table 2. In all results
presented, it is assumed that the control �a is updated every 0.01 s.

The accuracy of the approximation of the output and control
sequence is determined by the number of terms in the Taylor
expansion which is R for the output equation and S� R �M for the
control sequence. The accuracy of the approximations can then be
defined to arbitrary accuracy in theory by choosing R arbitrarily
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large. In practice, however, the size of R and S are limited by the
conditioning of the matrix �22 whose inverse must be calculated
to find the gains used in the control sequence given in Eq. (38).
Notice that �22 is independent of the plant and output and depends
only on the prediction horizon, relative degree, and the number of
expansion terms used in the control equation approximation. Hence,
conditioning of�22 is also independent of the plant and output. For
this case the practical limit onS is near 8, atwhich point�22 becomes
severely ill conditioned. The selection of S can also be understood by
inspection of the control approximation in Eqs. (5) and (6). If R is
selected small and equal to one more than the relative degree, S� 1,
the optimal control problem reduces to limiting the desired control to
be linear over the entire prediction horizon. This limitation causes a

conservative solution for control. In contrast, asR is increased so that
S is large, the expansion approximation can represent large and
rapidly varying control and the solution for the optimal control
approaches infinity because no penalty of the control exists in the
cost function. The number of control expansion terms can then be
viewed as a penalty term for control, where large S corresponds to
low control penalty and a small S corresponds to large control
penalty.

Figures 2 and 3 show simulation results for the parafoil and
payload system tracking a constant heading of 45 deg where the
prediction horizon is held constant at 3 s beginningwith t1 being zero
and S is increased from 1 to 6. As S is increased the limitation on the
control is decreased and the tracking performance becomes better. It
can also be seen that as S becomes large the control sequence does
indeed becomemore severe and if S could be chosen arbitrarily large
the control sequence would approach initial impulse control
achieving near perfect tracking at the cost of a large control input.

Figures 4 and 5 show a comparison of increasing control hori-
zon with a fixed number of six expansion terms. In Fig. 4 it is clear
that as the prediction horizon is increased tracking performance
is decreased. As the prediction horizon is increased the Taylor
series expansion must approximate a longer range of both the output
and control sequence. For extension of the prediction horizon to
achieve better tracking performance, the number of Taylor series
expansion terms must also be increased so as to maintain an ade-
quate level of control and output approximation over the extended
horizon.

Fig. 1 Parafoil and payload.

Table 2 Parafoil and payload aerodynamic coefficients

Parameter Value

CL0 0.400
CL� 2.000
CD0 0.150
CD�2 1.000
CD�a 0.001
Cl� �0:050
Clp �0:100
Cl�a 0.002
Cnr �0:070
Cn�a 0.004

Table 1 Parafoil and payload physical parameters

Variable Value Units

� 0.00238 slug 
 ft3

Weight 50.0 lbf
S 72.0 ft2

b 12.0 ft
c 6.0 ft
d 2.0 ft
IXX 4.83 slug 
 ft2

IYY 5.31 slug 
 ft2

IZZ 2.22 slug 
 ft2

IXZ 0.0006 slug 
 ft2

IXY , IYZ 0.0006 slug 
 ft2

Fig. 2 Yaw angle for constant control horizon (t2 � 3:0, t1 � 0:0).

Fig. 3 Control history for constant control horizon (t2 � 3:0, t1 � 0:0).
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As the prediction horizon becomes large so must S, but as already
mentioned, the size of S is limited by R and the conditioning of�22.
This problem can be circumvented because the optimal control gains
in the vector K for large prediction horizon and large S can be
approximated by a smaller prediction horizon and smaller S.
Figures 6 and 7 show a comparison of a larger prediction horizon of
8.0 s with S� 8 and a smaller prediction horizon of 2.054 s with
S� 3. The gain vector K for the larger prediction horizon is

f 25:59 20:47 7:00 g

whereas the gain vector K for the smaller prediction horizon is

f 29:08 20:47 6:57 g

Figure 6 shows that the tracking performance and gain vectors are
similar for the two cases. If a large prediction horizon is desired that
requires too large a value of S, a nearly equivalent set of gains can be
found by selecting a smaller S and an appropriate prediction horizon.
This implies that two possible methods can be used in selecting the
prediction horizon and the number of control expansion terms S. The
first method: select a desired prediction horizon specific to the plant
and then choose S to achieve an appropriate penalty on the control
sequence. The secondmethod: if S cannot be chosen large enough in
the first method, then a nearly equivalent NMPC can be designed by
selecting S as large as reasonable so that the matrix �22 is well

conditioned and then choosing an appropriate prediction horizon so
as to achieve a suitable control penalty.

Often tracking a desired heading angle is an intermediate step to a
more complicated control problem such as tracking a desired path in
inertial space. One approach is to convert the path into a desired
heading angle and rates of change of the desired heading angle.
Figure 8 shows geometry used to convert a desired path defined by
two points into a desired heading. A parameter called the “intersect
distance” is used along with two tracking points and the current
position to define a desired heading. The current and previous desired
heading angles are used to estimate the time derivates of the desired
heading angle. A desired heading and the first time derivate of
desired heading with an intersect distance of 100 ft are used with the
nonlinear model predictive strategy described in Sec. III. A
prediction horizon of 2.054 s and S� 3 are used and provide a gain
vector K of

f 29:08 20:47 6:57 g

Figure 9 shows the performance of control strategy for a desired path
defined by three tracking points: (0 ft, 0 ft), (1000 ft, 0 ft), and
(2000 ft, 500 ft). The parafoil is initially at (200 ft, 0 ft) but quickly
reaches the desired path near 250 ft down range. Figure 10 shows the
desired heading angle and actual heading angle where the only
significant control error is at the initial location and at 33 seconds
where the turn at 1000 ft downrange is reached. The control is shown

Fig. 4 Yaw angle for constant expansion order (S� 4, t1 � 0:0).

Fig. 5 Control for constant expansion order (S� 4, t1 � 0:0).

Fig. 6 Yaw angle for comparison of similar control gains (t1 � 0:0).

Fig. 7 Control for comparison of similar control gains (t1 � 0:0).
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in Fig. 11 where the largest control occurs initially and when the turn
is reached.

V. Glider Application

An angle tracking controller for a glider shown in Fig. 12 is
considered with the output vector given in Eq. (47). The controls are
given in Eq. (62) where �a, �f, and �e are the aileron, flaps, and
elevator controls, respectively.

u � f �a �f �e gT (62)

The glider aerodynamic forces and moment coefficient quantities
required in Eq. (51) are provided in Eqs. (63–66).

F A �
8<
:

Cx0 � Cx��� �c=VA�Cxqq
Cy��� �b=2VA��Cypp� Cyrr�
Cz0 � Cz��� �c=VA�Czqq

9=
; (63)

	FC� �
Cx�e Cx�f 0

0 0 Cy�a
Cz�e Cz�f 0

2
4

3
5 (64)

M A �

8>>>><
>>>>:

�
b
2

��
CL��� bCLpp

2VA
� bCLrr

2VA

�
c
�
CM0 � CM��� cCMqq

VA

�
�
b
2

��
CN��� bCNpp

2VA
� bCNrr

2VA

�

9>>>>=
>>>>;

(65)

	MC� �
dCL�a

2
0 0

0 cCM�f cCM�e
bCN�a

2
0 0

2
64

3
75 (66)

Fig. 8 Desired heading angle geometry for path tracking.

Fig. 9 Tracking a straight path and 27 deg turn.

Fig. 10 Yaw and desired yaw angle for path tracking.

Fig. 11 Yaw and desired yaw angle for path tracking.

Fig. 12 Glider schematic.
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The matrixMc contains the systems control moment coefficients
and may in general be singular. In the glider considered, the elevator
and flap controls are redundant with respect to control moments,
therefore the coefficient matrix is singular. In this case the
pseudoinverse may be used in the optimal control solution to find the
best fit solution.

The preceding system of equations describing the rigid glider are
numerically integrated using a fourth-order Runge–Kutta algorithm
to generate trajectories of the system. One example scenario is
examined using the physical parameters provided in Table 3, and the
aerodynamic properties provided in Table 4. In the following results,
the control derivative is updated every 0.01 s.

Figures 13–16 show simulation results for the glider tracking a
constant heading angle of 60 deg, roll angle of 0.34 times the heading
angle error, and a pitch angle of 22:5 sin�t� � 6 deg. The values

1 2 1
� �

are used in the error weighting matrix, the control is approximated
with an eighth-order Taylor series expansion, and the prediction
horizon is 1.0–6.0 s.

As in the parafoil case, the prediction horizon and Taylor series
expansion orders are used to balance control magnitude and tracking
error. Heading angle and pitch angle converge to their desired values
within 7 s. To allow a more aggressive time varying pitch trajectory

to be easily tracked, a constant weighing factor of 2 is applied to the
pitch angle error compared to unity for both the heading and roll
angle errors.

VI. Conclusions

A nonlinear model predictive control strategy for tracking a
desired orientation trajectory was developed for a general rigid air
vehicle. The control strategy was simulated for an autonomous
parafoil and payload system and an autonomous glider. The
performance of the controller was evaluated by varying prediction
horizons and number of Taylor expansion terms used for the
approximation of the output equation and the control sequence. It
was observed that a penalty for control can be implemented through
the selection of the number of Taylor series expansion terms even
with control being absent in the cost function. The selection of the
number of terms in the Taylor series expansion was limited only by
the conditioning of the matrix�22. Also, the limitation on the size of
S can be circumvented because a nearly equivalent controller to that
for a large S and large prediction horizon can be found for a small S
with the appropriate prediction horizon. This observation leads to
two possible methods for selecting S and the prediction horizon. The
first method: select a desired prediction horizon specific to the plant
and then choose S to achieve an appropriate penalty on the control
sequence. The secondmethod: if S cannot be chosen large enough in
the first method, then a nearly equivalent controller can be designed
by selecting S as large as reasonable so that the matrix �22 is well

Table 3 Glider physical properties

Variable Value Units

� 0.00238 slug 
 ft3

Weight 1.99 lbf
S 4.35 ft2

b 5.50 ft
c 0.557 ft
IXX 0.0548 slug 
 ft2

IYY 0.0288 slug 
 ft2

IZZ 0.0813 slug 
 ft2

IXZ �5:78e � 005 slug 
 ft2

IXY �5:05e � 006 slug 
 ft2

IYZ �1:93e � 006 slug 
 ft2

Table 4 Glider airfoil parameters

Main wing airfoil RG-15

Main wing flaps Trailing edge individual control
T-tail airfoil NACA 0009
T-tail flaps Trailing edge elevator only

Fig. 14 Glider pitch angle time history.

Fig. 13 Glider heading angle time history. Fig. 15 Glider bank angle time history.
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conditioned and then choosing an appropriate prediction horizon so
as to achieve a suitable control penalty. Another more complex
example is reported for an autonomous glider system in which
elevator and flap controls were redundant. The redundancy made the
control matrixMC singular. It was successfully demonstrated that a
pseudoinverse can be used.
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