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Abstract--A technique to numerically obtain the  static equilibrium s ta te  of a conventional 
dragline excavation system is reported, including static pose of the  bucket as well as internal loads 
acting on elements of the  excavation system. Equilibrium conditions are generated by numerically 
integrat ing the  dynamic equations of motion with the  hoist and drag rope lengths fixed. It is shown 
tha t  this  method can be greatly accelerated with the  application of artificial forces and moments 
proport ional  to the  velocity of the  bodies tha t  comprise the  dragline excavation system. The  benefits 
of appending artificial forces and moments  are demonstra ted on an exemplar conventional dragline 
excavation system using a complex three-dimensional dynamic simulation model. In this  model, the  
bucket, spreader bar, hoist cluster, and drag cluster are modeled as rigid bodies wi th  6 degrees of free- 
dom apiece while the drag rope, hoist rope, dump rope, hoist chains, and  drag chains are discretized 
into a finite number  of visco-elastic elements. Results generated from the  numerical stat ic pose sim- 
ulation are compared against measured static pose da ta  and agree favorably. © 2004 Elsevier Ltd. 
All rights reserved. 
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N O M E N C L A T U R E  

XB, YB, ZB components of the  position uR~, ve~, wa~ 
vector of the  center of mass of 
a body in an inertial reference 
frame 

components  of the  position PB, qB, rB 
vector of the  ith particle on 
a rope segment in an inertial 
reference frame 

Euler roll, pitch, and yaw angles 
of a body 

xzrQ, YFQ ~ zR i 

dPB, OB, %bB 
XB,YB,ZB 

components  of the  velocity 
vector of the i th particle on 
a rope segment in an inertial 
reference frame 

components  of the  angular 
velocity vector of a body in the  
body reference frame 

total  applied force compo- 
nents on a body in an inertial 
reference frame 
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xr~, Yr,, zr, 

LB,MB,NB 

fTV, fRY 

elastic force in the ith segment 
of a rope element in the inertial 
body reference frame 

total applied moments on a 
body about its mass center 
expressed in the body reference 
frame 

artificial force and moment 
factors proportional to trans- 
lational velocity and rotational 
velocity 

XA, YA, ZA 

LA,MA,NA 

components of artificial force in 
an inertial reference frame 

components of artificial moment 
applied to a body about its 
mass center expressed in the 
body reference frame 

I N T R O D U C T I O N  

Removal of overburden in surface mining operations is effectively accomplished by dragline 

excavation systems. A typical dragline excavation system is shown in Figures 1 and 2. An open 

bucket and rigging components are supported from above by a cable routed over a long boom 
which extends above the mine. Overburden is removed by dragging the bucket along the ground 
by a cable, and dumping it elsewhere. The bucket is indirectly controlled by an operator  in the 

excavator through rotat ion of the boom about  a vertical axis and payout  and windup of the hoist 

and drag ropes. 

For slowly operat ing dragline excavation systems, static system models provide a satisfactory 

est imate of loads tha t  is utilized in structural  sizing of components.  Static system models also 

provide bucket position and orientation information for various hoist and drag rope lengths  and 
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Figure 1. Dragline excavation system schematic. 
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Figure 2. Dragline bucket schematic. 

various bucket riggings that is useful for site excavation planning. In cases where relatively rapid 
maneuvering of the dragline system is encountered, the use of a dynamic dragline excavation 
model is more appropriate for estimating bucket orientation excursions and maximum loads on 
different components. Since both static and dynamic models of a dragline excavation system 
prove helpful in the design and analysis of these systems, a comprehensive method capable of 
performing both types of analysis is desirable. 

Several research groups have developed dragline excavation system models at various levels of 
sophistication for different analytical purposes. McCoy and Crowgey [1] investigated static and 
dynamic dragline bucket tightline control. Using simple geometric analysis, they constructed 
both static and dynamic tightline limits based on the length of the drag and hoist ropes and 
subsequently used these limits as part of an antitightline control system. Haneman, ttayes and 
Lumley [2] reported on dragline performance evaluations using physical modeling. Rigging ge- 
ometry and bucket size were optimized using physical modeling and compared against field data. 
Pathak, Dasgupta and Chattopadhyay [3] generated a method to compute the working zone of a 
dragline bucket. A graphical approach for determination of the bucket path profile of a standard 
dragline was indicated~ considering a three period duty cycle in each operation. Hainsworth, 
Corke and Winstanley [4] used machine vision techniques to remotely measure the location of a 
dragline bucket in space. Using only a single camera, an image segmentation process is used to 
classify the bucket and to identify its position in the scene. Ridley and Corke [5] developed a 
technique to estimate dragline bucket pose under gravity loading. Their model is based on static 
equilibrium of the loads on the different components of the system. 

Given a complex dynamic model of a dragline excavation system, static pose conditions can 
be computed by setting all derivatives of the state vector to zero and subsequently solving the 
remaining nonlinear algebraic equations for the static conditions. A host of numerical methods 
are available for this purpose [6]. In theory, a dynamic model of a dragline excavation system 
can be used to perform both static and dynamic analysis where static analysis is performed by 
integrating the dynamic equations of motion to a steady state with the hoist and drag rope 
lengths held constant. This basic approach is computationally expensive due to the complex 
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nature of dragline excavation systems and the associated long simulation run time required for 
the system to reach a steady-state condition. In this paper, a technique is presented that greatly 
accelerates convergence to steady state by adding artificial forces and moments to each body in 
the system that are proportional to the velocity of the body. In steady state, the artificial forces 
are zero and the achieved steady-state condition is the steady-state condition for the dragline 
excavation system. The artificial forces and moments are designed to rapidly damp motion of the 
excavator system. To illustrate the benefits of this approach, an example 1/16 th scale dragline 
excavation system is considered using a complex dragline excavation system dynamic model. The 
model includes rigid fully three-dimensional motion of the bucket, spreader bar, drag cluster, and 
hoist cluster as well as three-dimensional motion of flexible chains and ropes. Simulation results 
are compared with data measured from a 1/16 th scale dragline excavator model. 

D Y N A M I C  M O D E L  OF A D R A G L I N E  E X C A V A T I O N  S Y S T E M  

The dynamic event considered here consists of the motion of a complete dragline excavation 
system. As shown in Figures 1 and 2, the total system contains four rigid bodies and nine ropes. 
The rigid bodies include the bucket, drag cluster, hoist cluster, and spreader bar. The ropes 
include the drag rope, dump rope, hoist rope, left drag chain, left lower hoist chain, left upper 
hoist chain, right drag chain, right lower hoist chain, and right upper hoist chain. The surface of 
the ground is assumed to be a satisfactory inertial reference. As shown in Figure 1, the inertial 
reference frame is a right-handed coordinate system defined with its origin on the ground surface 
located below the excavator at the point of azimuth rotation of the excavator. The ~ and 
axes form the ground plane while the /~ /  axis completes the right-handed triad and points into 
the ground. 

Each rope segment is dynamically modeled as a set of particles connected by a standard linear 
solid visco-elastic element. All the mass elements of the system including all bodies (bucket, 
drag cluster, hoist cluster, spreader bar) and all particles on each rope segment (left lower hoist 
chain, right lower hoist chain, left upper hoist chain, right upper hoist chain, left drag chain, 
right drag chain, dump rope, drag rope, hoist rope) are connected to other system mass elements 
by elastic elements. Consequently, each body can be considered individually. Connection forces 
are simply treated as external forces acting on each body. Thus, derivatives of the state vector 
can be directly computed from the state vector in a straight forward manner. 

Generic Rope Segment Equations of Motion 

The dynamic equations for all rope segments assume the same structural form. Figure 3a 
depicts a typical rope segment consisting of a single length of rope with both ends attached to 
a moving body. Figure 3b provides a schematic on how the flexible rope element is discretized 
for dynamic modeling purposes. Each rope segment is split into nr particles and n~ + 1 elastic 
elements using truss finite elements. A standard linear solid visco-elastic element is used to 
connect particles. Collectively, the motion of the particles defines the motion of the complete 
rope segment. Each particle on a rope segment is a point mass possessing three translation 
degrees of freedom. Forces that drive the motion of the particles include particle weight and 
adjacent elastic element line forces. The dynamic equations for one particle on a rope segment 
are structurally the same for all particles, so the formulas to follow are shown only for the i th 

particle on an arbitrary rope segment 

ZR~ k WR~ 

= - -  YT, - -  YT,+  
~dJ R~ rr~ R~ ZT, - -  ZT,+ I 

(1) 

}{}o 1 {xA,} 
+ 0 + YA, • 

m R ¢  
g ZA~ 

(2) 
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Figure 3. Rope dynamic model schematic. 

In equation (2), mR~ is the mass of the ith particle on a rope segment and g is the gravitational 
constant. Terms XT~, YT~, ZT~ and XT~+I, YT~+I, ZT,+I represent the line force vector components 
expressed in the inertial reference frame of the line elements adjacent to the ith particle while 
terms XA~, YA~, ZA~ represent an artificial force used to rapidly settle bead vibration. 

The line forces are caused by strain of the rope and are directed parallel to the line. Rope 
line flexibility generates resistive stiffness and damping forces proportional to rope line segment 
extension and extension rate. 

Equations (3) and (4) provide expressions for the line tension force, FR~, in terms of the strain 
and strain rate of the elastic line element 

KvR~KsRI,sR~ ' KvR, (KvR~ -}- KsR,)SR~ + CvRi SR~ -- Ln, > O, 
FR, + C R, FR, = (3) 

O, sR, -- LR, <_ O, 

sn, = v / A 4 ,  + aye,, + a 4 ,  

In equation (3), KR, and CR~ are the stiffness and damping coefficients for an individual elas- 
tic line element. Also, LR~ is the nominal unstretched line length of an individual line element. 
The first condition in equation (3) represents the normal tension condition between two adjacent 
particles. In this case, the distance between the two adjacent particles is greater than the un- 
stretched elastic line element length and a nonzero tension force in the line persists. The second 
condition in equation (3) is the slack condition. It stipulates that when the unstretched elastic 
line element length is greater than the distance between two adjacent particles, the tension force 
decays to zero. 

Using rope segment position difference and velocity difference vectors, an expression for the 
elastic line force can be directly formed 

ZR, 

{ AXR~ } 
AyR, . 
A ZR~ 

(5) 

The number of state variables required to model a rope segment can be large. Consider a rope 
segment split into 20 particles. Since each particle requires six state variables and each segment 
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requires an additional state variable for the line force, this rope segment would require a total of 
141 state variables to define the motion of the complete rope segment. 

Generic Body Equations of Motion 

The dynamic equations for all body elements assume the same structural form. This section 
develops the basic dynamic equations of motion used for any body element. Each body is modeled 
as rigid and undergoes three-dimensional motion. Hence, 12 state variables are required to 
describe the motion of each rigid body at a given instant in time. The degrees of freedom for 
each body include three position components of the mass center of the body as well as three Euler 
orientation angles of the body. The translational dynamics of the mass center of an arbitrary 
body are given by equations (6) and (7) 

YB -~- VB 

ZB WB 

i;g = YB 
mB 

"l~B ZB 4- g 

m B  

(6) 

(7) 

In equation (7), mB is the mass of the body and Xs,  YB, ZB axe the components of the external 
rope coupling forces on the body expressed in the inertia/reference frame. 

The orientation of a body element is defined by a sequence of three body fixed Euler angle 
rotations [7]. Starting from the inertial reference frame a rotation of OB is executed about the 
axis. The resulting rotated reference frame is called the O frame. Next, the O frame is rotated 
about the fo axis by angle CB. The resulting reference frame is denoted the T frame. The T frame 
is subsequently rotated about the/~T axis by angle CB yielding the body reference frame. Angles 
CB, 8B, and CS are the Euler angles associated with the body. The kinematic relationship 
between time derivatives of the Euler angles and body frame angular velocity components is 

(8) 

shown in equation (8) 

8B qB • 

k scBt¢~ ccstcB 

Equation (8) uses the following shorthand notation for trigonometric sine, cosine, and tangent 
functions: s~ _= sina, ca -: cosa, t~ - t ana .  The rotational dynamic equation for a body is 

(9) 

given in equation (9) 

4B = [IB] -1 MB - rB 

~S NB --qB 
0 --PB [IB ] qB • 

PB 0 rB 

In equation (9), IB denotes the mass moment of inertia matrix of the body about its own mass 
center and LB, M s ,  NB represent the components of the total externally applied moment vector 
on the body about its own mass center expressed in its own reference frame. 

Rope Edge Point Position and Velocity 

Edge point position and velocity of a rope segment is required for visco-elastic line force com- 
putation. For edge points of a rope segment that are fixed on a body of the system, expressions 
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for the position and velocity are formed from the motion of the connection point on the body. 
The inertial position vector components of the connection of a rope segment and a body is con- 
structed as the distance from the inertial reference frame to the mass center of the body plus the 
distance vector from the body mass center to the connection point 

Yc = YB +[TB--.I] B L g - B L B  . (10) 
Z c Z B WLUG - W L B  

Components xc ,  Yc, zc  in equation (10) represent the inertial position components of a rope 
segment and body interface. The inertial location of the mass center of the body is denoted as 
xB,YB,  ZB. The second term in equation (10) is the inertial position vector components of the 
distance from the mass center of the body to the interface point. Matrix TB--.x is an orthonormal 
transformation relating the body reference frame to the inertial reference frame 

[ ccBce ~ + s¢~s¢~soB -sCBc~ B + C~BS~BSe B CcBSe B ] 
TB--I = [ S*sC~,~ CCBCCs --S~s ] . (11) 

L-ccss0s  q- 8¢BScsC0B SCBSO B -b CcBScBC8 B C¢BC8 B 
Components SLUG, B L ~ ,  W L  B are the body frame coordinates of the interface point while the 
components S L B , B L B , W L B  are the body frame coordinates of the body mass center. The 
velocity of the interface point with respect to inertial space is obtained by differentiating equa- 
tion (10). 

Some rope segment edge points are not connected to bodies included in the dynamic system. 
For example, the end point of the hoist rope is connected to the hoist reel. For end points not 
attached to a body element of the system, the motion of the connection point is known as a 
function of time. Prior specification of an excavation maneuver defines the inertial position and 
velocity of the hoist reel, drag reel, and boom points. Furthermore, definition of an excavator 
maneuver also yields the length of line of the hoist and drag reels as a function of time. Com- 
putationally, any prescribed motion variables are determined by linear interpolation of a table of 
data with time as the abscissa and the prescribed motion parameter as the ordinate. 

B o d y  Forces and  M o m e n t s  

The forces and moments acting on a body of the dragline excavation system consist of body 
weight and elastic line forces from rope segments connected to the body. Each rope segment is 
divided into nr particles and nr + 1 adjoining elastic elements. The visco-elastic forces applied to 
a body are generated from either the first or last element, depending on whether the connection 
is a beginning or ending connection point for the rope segment. Beginning connections use the 
first line element force of a rope segment while ending connections use the last line element force 
of a rope segment 

YB = ~ aj YT~ • (12) 

ZB j=l ZToj 
In equation (12), the index ej is either 1 or n~ + 1 depending on whether the jth rope segment 

connection is a beginning or ending connection. When the connection is a beginning connection 
aj = -1  and when the connection is an ending connection aj = 1. The moment about the mass 
center of a body due to the connection forces shown above is computed as a cross product of the 
distance vector from the mass center to the connection location and the connection force. Both 
the distance vector and the connection forces are expressed in the body reference frame so the 
resulting moments are also expressed in the body reference frame as required in the equations of 
motion 

MB = ~ a j  [Scjl[TB__.x] T ~ YT~j • (13) 
Y s  j=l [ ZToj 

In equation (13), Scj is a matrix cross product operator. 
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A R T I F I C I A L  F O R C E S  A N D  M O M E N T S  

In the equations of motion described above, the bead dynamic equations and the body trans- 
lational dynamic equations contain an artificial force term while the body rotational dynamic 
equations contain an artificial moment term. These artificial forces and moment are loads that 
do not actually exist in the system being modeled but are added to the equations of motion to 
accelerate convergence of the system to a steady state. To obtain an equilibrium condition, the 
equations of motion are integrated forward in time until a steady-state condition is achieved. 
Since the interest in this effort is focused on the equilibrium condition, and not the specific path 
toward equilibrium, application of artificial forces and moments does not alter the equilibrium 
state provided the artificial forces and moments are zero at the equilibrium point. Artificial forces 
proportional to velocity equal zero when the system is quiescent and, thus, provide a functional 
form from which artificial loads can be generated. 

The artificial velocity force is based on the concept of fluid dynamic damping, which produces 
forces and moments that are proportional to the square of velocity and are in the direction 
opposite of motion. For a bead, 

YA, - vR, vR, . 
ZAi WR~ 

(14) 

The formula for a body takes on the same structure, except the components of the mass center 
velocity of the body are used rather than bead velocity components. Function fwv depends on 

the total velocity VR~ = ~/u~R~ -[- V2R, + w2RI and is proportional to the mass of the body with 

upper and lower limits applied. The artificial velocity moment depends on the angular velocity 

fM~ 
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Figure 4. Functional form of artificial force and moment factors (fTV and f tw) .  
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Figure 5. Functional form of artificial force and moment t ime factor (]T). 
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components of a body and are directed opposite to the direction of motion 

M A - -  ~ ' ~ B  qB • 
NA rB 

(15) 

Function fay depends on the total angular velocity ~B = X/P~ + q~ q- r~ and is proportional 
to the average of the diagonal elements of the inertia matrix of the body with upper and lower 
limits applied. Figure 4 presents a diagram of the basic functional form of all artificial force and 
moment factors. The artificial force and moment factors fTv and fRv are selected to minimize 
the simulation time required to reach steady state. The translational artificial force factor fT  is 
used to smoothly blend the artificial force and moment terms into the simulation. It is equal to 1 
when the artificial force and moment factors are active and equal to 0 when the artificial force 
and moment terms are inactive. Figure 5 shows an example of the artificial force and moment 
time factor, fT.  

D E T E R M I N A T I O N  O F  E Q U I L I B R I U M  S T A T E S  

F O R  D R A G L I N E  E X C A V A T I O N  S Y S T E M  

Using a standard fourth-order Runge-Kutta method, an equilibrium state is determined by 
integrating the dynamic equations forward in time from an initial state until the system settles, 
such that the velocity of all components is sufficiently small. When the numerical integration 
process begins from a nonequilibrium state or when the hoist or drag rope length is changed, the 
system first vibrates and subsequently settles to an equilibrium position. The equilibrium state of 
the dragline excavation system for different operational hoist and drag rope lengths is determined 
by intermittently reeling in or paying out the hoist and/or drag rope. After the hoist or drag 
ropes are reeled in or payed out, the ropes are held at a constant length for a specific duration 
of time to allow the complete system to settle and achieve a new static equilibrium state. The 
application of artificial forces and moments to the excavator system is intended to minimize the 
duration of time required for the system to settle, in turn reducing the computational burden 
involved in calculating the static conditions for the excavator system. 

To optimize the effectiveness of the artificial forces and moments, fT  is gradually increased 
from 0 to 1, and vice versa. During the time period when the hoist or drag ropes are reeling in or 
paying out, fT is small to allow the system to maneuver without impedance from artificial loads. 
The upper limit on all artificial force and moment factors (fTV and fRV) also allows the system 
to maneuver when the velocity is relatively high while at the same time preventing artificial loads 
from destabilizing the system. The lower limit on all the artificial force and moment factors (fTV 
and/Rv)  is necessary to increase the artificial forces and moments when velocity is low so that 
settling time is minimized. Without a lower limit on fTV and fRV, the velocity of the system 
elements after a move is small but not negligible, resulting in relatively small artificial forces. 
The lower limit on fTV and fRV eliminates these minor vibrations very quickly. 

E X A M P L E  R E S U L T S  

In order to illustrate the utility of this numerical technique, consider an exemplar 1/16 th scale 
dragline excavation system with physical properties delineated in Tables 1 and 2 and artificial 
force characteristics given in Table 3. In the example simulation shown, five different equilibrium 
positions are achieved by intermittently changing the length of the drag rope while holding the 
hoist rope length fixed. The drag rope and hoist rope are initially set to 15.1 ft and 26.25ft, 
respectively. At t = 0 sec, the drag rope length is decreased by 1/2 ft in one second, while the 
hoist rope length is unchanged. The system then settles for ten seconds. Then, the drag rope 
length is again decreased by 1/2ft in one second. This process is repeated for five different 



2 4 2  M .  C O S T E L L O  AND J .  K Y L B  

drag rope lengths: 15.1ft, 14.6ft, 14.1ft, 13.6ft, 13.1ft. For the entire event, the excavator 

boom azimuth angle equals zero. Figures 6-8 show the time history of the position of the mass 
center of the bucket and the pitch angle of the bucket for the conditions above. Two cases are 
shown. The solid line is the response of the system with artificial forces and moments as discussed 
previously while the dashed line presents the response of the same system without artificial forces 
and moments. Initially, at t = -19sec ,  all rope segments are slightly slack. The system quickly 
settles to a steady state using artificial forces and moments. This steady-state condition is used to 
begin the case where no artificial force and moments are incorporated. Notice that  the response 
with artificial forces and moments settles to a new static condition within a few seconds while the 
response without artificial forces and moments does not settle within 10 seconds. With the hoist 

rope length set to 26.25 ft and the drag rope length of 15.1ft, the bucket pitch angle is about 

- 6 5  ° (Figure 8). As the drag rope length is discretely decreased the bucket carry angle steadily 

increases to approximately - 5 0  °, - 3 4  °, - 1 7  °, - 3  ° . Also, as the drag rope length is incrementally 
decreased the bucket incrementally moves closer to the boom. The discrete changes in drag rope 
length cause changes in the static conditions in the longitudinal plane, thus, the lateral component 
of motion is caused only by the nonsymmetric mass properties of the system and is small. 
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Figure 8. Pitch angle of bucket vs. time with and without artificial forces. 

Table  1. Phys ica l  p r o p e r t i e s  for r igid bodies .  

P a r a m e t e r  Bucke t  D r a g  C l u s t e r  Ho i s t  C l u s t e r  S p r e a d e r  B a r  

Mass ,  mB (s lug)  0.3767 0.00623 0.0232 0.022600 

C.G.  L o c a t i o n  SLB (ft) 0.3058 0.0 0.0 0.0 

C .G.  Loca t ion ,  BLB (ft) 0.0 0.0 0.0 0.0 

C.G.  Loca t ion ,  WLB (ft) - 0 . 0 6 8 0  0.0 0.0 0.0 

Ine r t i a ,  IBxx  (s lug f t^2)  0.05254 0.000005 0.000048 0.003401 

0.06333 0.000545 0.000025 Ine r t i a ,  IBrv (s lug ft^2) 

Ine r t i a ,  IBzz (s lug ft^2) 0.00881 

0.000022 

0.000018 0.000510 0.003390 

For a given dragline rigging, a static pose chart of a dragline excavation system plots the 
position and carry angle of the bucket for a matrix of hoist rope and drag rope lengths. Initially, 
the hoist rope length is fixed while the drag rope is incremented through its range, followed by 
incrementing the hoist rope length once and repeating the drag rope increment. This is repeated 
until the hoist rope has been incremented through its entire range, creating a full matrix of the 
excavator bucket positions and carry angles. 

Bucket pose for each cycle is determined both experimentally and using the simulation method- 
ology described above. As shown in Figure 9, the scaled dragline excavator system is comprised 
of four rigid bodies; the bucket, spreader bar, hoist cluster, and drag cluster. Weights, inertial 
properties, and center of mass location for each body are listed in Table 1. The scaled dragline 
excavator system also employs three ropes (drag, dump, and hoist ropes), and six chains (left 
drag chain, left lower hoist chain, left upper hoist chain, right drag chain, right lower hoist chain, 
and right upper hoist chain). Both the drag and hoist lines are half inch rope, the dump line 
is quarter inch rope, and all chains are 3//8 in closed link chain. Chain and rope properties are 
listed in Table 2. The assembled bucket and rigging system weighs 24 lb f. 

Position of each body and a portion of the drag and hoist ropes is tracked using a 3-D op- 
tical position analysis system from VICON Motion Systems [8]. Spherical reflective markers, 
5 millimeter in diameter are placed on each body of interest. As shown in Figure 10, six cameras 
strategically placed throughout the laboratory emit and collect visible red light reflected from 
the markers. Using optical correlation techniques the position of the center of each marker is 
determined in three dimensions. This data is time stamped and stored in a text file which is then 
used to determine drag and hoist rope lengths along with body position and orientation. 
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Table 2. Physical properties for rope segments. 

Rope Segment Number of Particles Rope Mass (slug/ft) Total Rope Length (ft) 

Drag Rope 6 0.00141 10.0 

Dump Rope 5 0.00152 3.57 

Hoist Rope 10 0.00141 20.0 

Left Drag Chain 5 0.01165 1.9375 

Left Lower Hoist Chain 2 0.01165 0.5625 

Left Upper Hoist Chain 3 0.01165 0.9167 

Right Drag Chain 5 0.01165 1.9375 

Right Lower Hoist Chain 2 0.01165 0.5625 

0.9167 Right Upper Hoist Chain 0.01165 

Table 3. Artificial force and moment properties. 

Artificial Artificial Maximum Minimum Maximum Minimum 
System Force Moment Artificial Artificial Artificial Artificial 

Component Factor Factor Force (lb) Force (lb) Moment (ft*lb) Moment (ft*lb) 

Drag Rope 0.252 N/A 176.4 0.0003 N/A N/A 

Dump Rope 0.079 N/A 53.9 0.0001 N/A N/A 

Hoist Rope 

Left Drag Chain 

Right Upper 
Hoist Chain 

0.266 

0.4032 

N/A 

N/A 

N/A 

181.3 

274.4 

0.0003 

0.0004 

0.259 176.4 0.0003 

Left Upper 0.259 N/A 176.4 0.0003 
Hoist Chain 

Right Drag Chain 0.403 N/A 274.4 0.0004 

Right Lower 0.238 N/A 161.7 0.0002 
Hoist Chain 

Left Lower 0.238 N/A 161.7 0.0002 
Hoist Chain 

Bucket 0.049 0.9559 308.89 0.0377 

Spreader Bar 

Drag Cluster 

0.0523 

0.0003 

0.0085 

0.0029 

0.0001 

18.53 

5.11 

19.02 0.0031 Hoist Cluster 

0.0023 

0.0006 

0.0023 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A N/A 

N/A N/A 

N/A N/A 

N/A N/A 

1,329.9 0.000 

72.7 0.000 

0.5 0.000 

11.8 0.000 

For the example system mentioned above, Figure 11 displays the static pose charts for three 
hoist rope lengths. In Figure 11, the solid line and circles represent measured bucket pose while 

the dashed line and cross' represent predicted pose. For clarity, the bucket carry angle for Cycle I, 
Cycle II,  and Cycle I I I  is shown in Figures 12-14. Bucket position is predicted well for each cycle 
with a max imum difference of 3.2 inches. Predicted carry angle remains within 5 ° of measured 

values throughout  the first two cycles. Cycle 3 bucket predicted carry angle remains within 8 ° of 

measured values. 

Predicted bucket position in Cycle I matches measured values within 3.1 inches. Maximum 
differences occur between points 3 through 6 and 13 through 16 of 16. Cycle I bucket pitch angle 
follows a similar t rend with a max imum difference of 5 ° occurring between points 3 through 6 
and 13 through 16 of 16. Predicted bucket position in Cycle I I  matches measured values within 
2.2 inches, max imum differences occur at points 2 through 5 and 11 of 11. Cycle I I  bucket pitch 
angle follows a similar t rend with a max imum difference of 5 ° occurring at  points 2 through 5 
and 11 of 11. Predicted bucket position in Cycle I I I  matches measured values within 3.2 inches, 
max imum differences occur at  points 6 through 8 of 8. Cycle I I I  bucket pitch angle remains 
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Figure 9, 16 th scale dragline excavator rigging. 

Figure 10. 16 TM scale dragline excavator system. 

within 8 ° of measured values with max imum differences occurring between points 6 through 8 
of 8. 

Comparison results show in general when predicted and measured carry angle da ta  match,  
bucket positions also match.  Due to system rigging, the relationship between pitch angle and 
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Figure 14. Measured and predicted bucket pitch for Cycle III (hoist rope 26.9 ft). 

bucket mass center position are highly coupled. The simplified model used for the hoist cluster 
pulley seems to be a significant contributor to differences between measured and predicted data. 

C O N C L U S I O N S  

A method to rapidly generate static conditions for a complex three-dimensional dragline ex- 
cavation system has been presented using dynamic simulation. The bucket, spreader bar, hoist 
cluster, and drag cluster are modeled as rigid bodies with 6 degrees of freedom apiece while 
the drag rope, hoist rope, dump rope, hoist chains, and drag chains are discretized into a finite 
number of point masses or beads that each allow 3 degrees of freedom. A specialized method to 
numerically obtain the static equilibrium state of a conventional dragline excavation system is 
developed where the dynamic equations of motion are integrated to a steady state with the drag 
rope and hoist rope lengths fixed. A novel aspect of the method is that artificial forces and mo- 
ments are appended to the dynamic equations that dramatically improve convergence to a steady 
state while not changing the equilibrium condition. This method is exercised in generating static 
pose of an exemplar dragline excavation system. The numerically generated results agree well 
with experimental measurements on a 16 TM scale dragline excavator system. 
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