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This paper examines the problem of enhancing maneuverability of gun-launched munitions utilizing low 
cost technologies. Two ideas are proposed for reducing cost: (1) designing algorithms that reduce the 
sensor or actuator burden, and (2) performing high fidelity modeling and simulation of the entire system 
with realistic data input. The fundamental theory underpinning guided projectile flight systems, including 
nonlinear equations of motion for projectile flight, aerodynamic modeling, actuator dynamics, and 
measurement modeling, is outlined. Manipulation of these nonlinear models into linear system models 
enables airframe stability investigation and flight control design. A basic framework for low cost guidance, 
navigation, and control (GNC) of high maneuverability projectiles is formulated. Theory was implemented 
in simulation and exercised for a guided projectile system. Results support the hypothesis that algorithms 
can compensate for poor actuator performance and identified critical trade study parameters. Monte 
Carlo analysis indicated that the cost associated with measurements of a threshold accuracy rather than 
actuation technologies prescribes guided system performance.

Published by Elsevier Masson SAS.
1. Introduction

The acquisition opportunities for new weapons systems are in-
creasingly limited due to budget restrictions. This environment 
requires a major shift in defense research toward low cost tech-
nologies. In the past, the typical research progression yielded new 
weapons often characterized as more complex and of higher cost. 
A more appropriate research emphasis is cost-effective technolo-
gies.

The focus of this study is performance improvement of guided 
projectiles using low cost components. Precision munitions have 
enjoyed some development in recent years. Feedback measure-
ments from a laser designator have been used in guided projectiles 
[12,2]. GPS navigation has been utilized more recently for precision 
munitions [8,11,5,6]. These past efforts have all focused on indirect 
fire weapons mainly against stationary targets. The airframes either 
featured low inherent maneuverability or the nature of the feed-
back measurements did not permit intercepting moving targets.

This study extends past work in guided projectiles by inves-
tigating enhanced maneuverability for range extension, terminal 
trajectory shaping, or engaging movers. High maneuverability air-
craft and missiles have been in existence for many years. Classi-
cal and modern control techniques have been applied with much 
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success to the missile problem [1,15,14,19,20,9,18]. Cost often as-
sociated with the sensor and actuation systems; however, it is a 
detractor for application of aircraft and missile technology to the 
gun-launched environment. The land warfare community requires 
a high volume of available fires and the projectiles are of one-time
use in contrast to manned and unmanned aircraft. Additionally, 
maneuver authority is often limited in the gun application due 
to stowing aerodynamic stabilizing and control surfaces for tube 
launch and reduced dynamic pressure for aerodynamic control due 
to the frequent absence of a rocket motor. Components must be 
hardened to survive the gun launch event. Finally, the performance 
of low cost guidance, navigation, and control (GNC) technologies 
(e.g., initial measurement time, measurement calibration, measure-
ment update rates, actuator bandwidth, and processor throughput) 
is stressed in the dynamic ballistic environment (high Mach num-
ber, short time-of-flight, high spin rate).

In this study we propose to solve the low cost, high maneuver-
ability projectile problem using two fundamental ideas. The first 
core theme is to develop algorithms which reduce the actuator 
or sensor burden. Cost drivers in aerospace systems are often the 
sensor or actuation system. We seek to understand how carefully 
constructed software can accommodate poor performing hardware 
for gun-launched munitions. The second thesis is that high fidelity 
multidisciplinary modeling must be developed to perform simula-
tions which consider all aspects of the problem concurrently. Un-
derstanding the coupling between modeling of the actuator input, 
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Fig. 1. Block diagram of nonlinear system dynamics with feedback control.
airframe response, and measurement output is critical to analyzing 
the cost-performance trades which define system requirements. 
Examining a portion of this problem in isolation as performed in 
past work does not yield cost driving technologies.

This paper is organized as follows. Nonlinear equations gov-
erning flight motion, actuator response, and measurements are 
derived. This paper describes these multidisciplinary nonlinear 
models in a comprehensive manner and formulates them for the 
present problem. Linearization and incorporation of flight, actuator, 
and measurement models into various system models which are 
critical to understanding guided flight behavior and underpins con-
trol design, are detailed. The overarching guidance and flight con-
trol strategy for low cost, enhanced maneuverability is sketched. 
The family of proportional guidance laws, which are based on the 
measurement models and enable interception of moving targets 
with minimal feedback measurements, is outlined. Flight control 
techniques are provided which utilize the system modeling and 
accommodate low cost actuation and measurement technologies. 
Characteristics of a high maneuverability airframe and low cost 
GNC system are given. Finally, linear flight control and nonlinear 
guidance and flight control simulation results demonstrate the im-
plementation of the theory and efficacy of the GNC solution.

2. Theory

2.1. Problem formulation

The basic elements of a guided projectile are shown in the 
block diagram of Fig. 1. The nonlinear dynamics of the actuator, 
flight, and measurements are fed back and combined with a de-
sired reference to yield an error. Control commands, formed by 
multiplying this error by a gain, influence the system dynamics to 
achieve the desired response.

High fidelity models of the actuator, flight, and measurements 
must be formulated and implemented in simulation to support the 
thesis of this work. These models are provided in subsequent sec-
tions.

2.2. Flight models

The flight model includes aerodynamics and flight dynamics. 
The reference frames and coordinate systems follow. The Earth co-
ordinate system (subscript E) is used for the inertial frame and the 
body-fixed coordinate system (subscript B) is used for the body 
frame. These coordinate systems obey the right-hand rule and are 
related by the Euler angles for roll (φ), pitch (θ ), and yaw (ψ ) as 
shown in Fig. 2.

Applying trigonometry with the standard aerospace rotation se-
quence (Z –Y –X) yields the transformation matrix from quantities 
in body-fixed coordinates to Earth coordinates:

⇀

T B E =
[ cθ cψ sφsθ cψ − cφsψ cφsθ cψ + sφsψ

cθ sψ sφsθ sψ + cφcψ cφsθ sψ + sφsψ

−sθ sφcθ cφcθ

]
(1)

Maneuvering projectile flight is often achieved through move-
able aerodynamic surfaces. Fig. 3 shows four moveable surfaces 

Fig. 2. Earth and body-fixed coordinate systems and Euler angles.

Fig. 3. Moveable aerodynamic surface numbering scheme and trailing edge deflec-
tion sign convention (viewed from projectile base).

equally distributed around the projectile; as well as the number-
ing scheme and sign convention associated with the trailing edge. 
The moveable aerodynamic surfaces are numbered starting with 
the surface with smallest roll angle and proceeding with increas-
ing roll angle.

Individual moveable aerodynamic surfaces combine to yield ef-
fective roll, pitch, and yaw deflections. The drag deflections are not 
used in the maneuver scheme:

δp = 1

4
(−δ1 − δ2 − δ3 − δ4)

δq = 1

4
(δ1 − δ2 − δ3 + δ4)

δr = 1

4
(δ1 + δ2 − δ3 − δ4)

δd = 1

4
(δ1 − δ2 + δ3 − δ4) (2)

Rigid body projectile flight states are center-of-gravity posi-
tion [ x y z ]T , attitude [ φ θ ψ ]T , body translational velocity 
[ u v w ]T , and body rotational velocity [ p q r ]T . Kinematics 
provides the relationships between motion in the body and inertial 
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Fig. 4. Body-fixed coordinate system and aerodynamic angles.

frames. Translational and rotational kinematics for the body-fixed 
coordinate system are [13,10,16][ ẋ

ẏ
ż

]
=

[ cθ cψ sφsθ cψ − cφsψ cφsθ cψ + sφsψ

cθ sψ sφsθ sψ + cφcψ cφsθ sψ + sφcψ

−sθ sφcθ cφcθ

][ u
v
w

]
(3)

[
φ̇

θ̇

ψ̇

]
=

[1 sφtθ cφtθ
0 cφ −sφ

0 sφ/cθ cφ/cθ

][ p
q
r

]
(4)

Newton’s 2nd law may be applied to derive the dynamics of a 
rigid body projectile in flight. The translational dynamics may be 
expressed in body-fixed coordinates [13,10,16][ u̇

v̇
ẇ

]
= 1

m

[ X
Y
Z

]
−

[ 0 −r q
r 0 −p

−q p 0

][ u
v
w

]
(5)

[ ṗ
q̇
ṙ

]
=⇀

I−1

[ L
M
N

]
−⇀

I−1

[ 0 −r q
r 0 −p

−q p 0

]
⇀

I

[ p
q
r

]
(6)

The forces are comprised of aerodynamic and gravity (
⇀

F B
G =

⇀

T T
B E [ 0 0 g ]T ) terms. Moments are solely aerodynamic.

An illustration of the projectile with the body-fixed coordinate 
system is provided in Fig. 4.

Aerodynamic angles are computed based on the body-fixed ve-
locity components. The pitch angle-of-attack (or sometimes just 
angle-of-attack) is defined below

α = a sin

[
w√

u2 + w2

]
(7)

The yaw angle-of-attack (or sometimes sideslip angle) is

β = a sin

[
v√

u2 + v2 + w2

]
(8)

The aerodynamic roll angle follows

φA = a tan

[
v

w

]
(9)

Finally, the total angle-of-attack is the root-square-sum of the 
pitch and yaw angles-of-attack

α =
√

α2 + β2 (10)

Total aerodynamic forces and moments are separated into rigid 
and moveable aerodynamic surfaces.

Rigid aerodynamic surface forces include static (linear and non-
linear) and dynamic terms. Symbols in parentheses indicate func-
tional form of aerodynamic coefficients. The dynamic pressure is 
Q = 1

2 ρV 2 and aerodynamic reference area is S = π
4 D2 where D

is the projectile diameter and V is the total velocity

XR = −Q S
[
C X0(M) + C X

α2 (M) sin2 α
]

(11)

Y R = −Q S

[
CY0(M) + CYβ (M) sinβ

+ CY
β3 (M) sin3 β + CYα (M) sinα

+ CY pα (M) sinα
pD

2V

]
(12)

Z R = −Q S

[
C Z0(M) + C Zα (M) sinα

+ C Z
α3 (M) sin3 α + C Zβ (M) sin β

+ C Z pβ (M) sin β
pD

2V

]
(13)

Rigid aerodynamic surface moments include static (linear and 
nonlinear) and dynamic terms. The pitching moment accounts 
for a center-of-gravity (CGN ) which has been shifted from the 
center-of-gravity (CGN,A ) used to obtain the aerodynamic data. The 
center-of-gravity is measured from the nose and is given in units 
of calibers

LR = Q S D

[
Cl0(M,α,φA, δi) + Clp (M)

pD

2V

]
(14)

MR = Q S D

[
Cm0(M) + Cmα (M) sinα

+ Cm
α3 (M) sin3 α + Cmq (M)

qD

2V

+ Cmβ (M) sin β + Cmpβ (M) sin β
pD

2V

]
− Z R(CGN − CGN,A)D (15)

NR = Q S D

[
−Cn0(M) − Cnβ (M) sinβ − Cn

β3 (M) sin3 β

+ Cmr (M)
rD

2V
+ Cnα (M) sinα

+ Cnpα (M) sinα
pD

2V

]
+ Y R(CGN − CGN,A)D (16)

The following approach may be used to calculate moveable 
aerodynamic surface forces and moments for the ith blade. First, 
compute local velocity at each blade from center-of-pressure data 
(CP, measured in calibers forward of CG), blade geometry (φMi ), 
and rigid body states using the equation relating the velocity of 
two fixed points on a rigid body,

⇀

V Mi/I = ⇀

V CG/I + ⇀
ωB/I ×⇀

rCG→CPi (17)

where 
⇀

V CG/I = [ u v w ]T , ⇀
ωB/I = [ p q r ]T , and ⇀

rCG→CPi =
D[ (CP X (M, δCi ) + CGN − CGN,A) CPR cos(φMi ) CPR sin(φMi) ]T . The 
axial and radial center-of-pressure of the moveable aerodynamic 
surface is a function of Mach number and lifting surface deflection 
angle δi .

Obtain local velocity at each blade in the moveable aerody-
namic surface coordinate system using the transformation matrix:

⇀

T BMi =
⎡
⎣ 1 0 0

0 cos(φMi ) sin(φMi )

0 − sin(φMi ) cos(φMi )

⎤
⎦ (18)

⎡
⎢⎣

uMi
Mi

v Mi
Mi

w Mi
Mi

⎤
⎥⎦ = ⇀

T BMi

⎡
⎢⎣

uB
Mi

v B
Mi

w B
Mi

⎤
⎥⎦ (19)
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Calculate local blade angle-of-attack from the local velocity in 
each moveable aerodynamic surface coordinate system:

αMi = asin

[ w Mi
Mi√

u
M2

i
Mi

+ w
M2

i
Mi

]
(20)

Determine moveable aerodynamic surface aerodynamic coeffi-
cients:

C Mi
X = C M

X0
(M, δi) + C M

X
α2

(M, δi) sin2 αMi (21)

C Mi
l = C M

l0
(M, δi) (22)

C Mi
N = C M

N0
(M, δi) + C M

Nα
(M, δi) sinαMi

+ C M
N

α3
(M, δi) sin3 αMi (23)

C Mi
m = C M

m0
(M, δi) + C M

mα
(M, δi) sinαMi

+ C M
m

α3
(M, δi) sin3 αMi (24)

Compute moveable aerodynamic surface axial and normal force 
and roll and pitching moment:

XMi = −Q Mi SC Mi
X (25)

LMi = Q Mi S DC Mi
l (26)

Z Mi = −Q Mi SC Mi
N (27)

MMi = Q Mi S DC Mi
m − NMi (CGN − CGN,A)D (28)

Transform these forces and moments in the moveable aero-
dynamic surface coordinate system to the body-fixed coordinate 
system:⎡
⎣ X B

Mi

Y B
Mi

Z B
Mi

⎤
⎦ = ⇀

T T
BMi

[ XMi

0
Z Mi

]
(29)

⎡
⎣ LB

Mi

M B
Mi

N B
Mi

⎤
⎦ = ⇀

T T
BMi

[ LMi

MMi

0

]
(30)

The flight dynamics are linearized and cast into state space 
form for state dynamics (

⇀

ẋF = ⇀

A F
⇀
xF + ⇀

B F
⇀
uF + ⇀

F F ) and measure-
ments (

⇀
yF = ⇀

C F
⇀
xF + ⇀

D F
⇀
uF ). The nonlinear equations of motion 

for projectile flight are linearized by making a few assumptions 
[13,3]. Off-diagonal inertia tensor terms are small compared with 
the diagonal terms. Gravity and products of dynamic states (i.e., 
u, v, w, p, q, r) are neglected. Total angle-of-attack is small and 
aerodynamic normal force and pitching moment trims, as well as 
side forces and side moments are neglected so that only linear 
terms remain in the aerodynamic model.

The state vector is defined:

⇀
xF = [φ p q r v̇ ẇ]T (31)

The controls are the roll, pitch, and yaw deflections:

⇀
uF = [δp δq δr]T (32)

The state transition matrix has the form below. The roll angle 
dynamics is incorporated by simple integration of the roll rate:

⇀

A F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 Q S D

Ixx
D

2V Clp 0 0 0 0

0 0 Q S D
Izz

D
2V Cmq 0 0 mD

Izz
Cmα
C Zα

0 0 0 − Q S D
I yy

D
2V Cmr

mD
I yy

Cnβ
CYβ

0

0 0 0 Q S
m CYβ

− Q S
mV CYβ

0

0 0 Q S
m C Zα 0 0 − Q S

mV C Zα

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(33)

Fig. 5. Experimental actuator characterization.

The controls matrix follows

⇀

B F =

⎡
⎢⎢⎢⎢⎣

0 0 0
Q S D
Izz

Clδp
0 0

0 Q S D
Izz

Cmδq
0

0 0 − Q S D
I yy

Cnδr

0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦ (34)

The static roll moment appears as a steady-state term which is 
independent of the state and control vector:

⇀

F F =

⎡
⎢⎢⎢⎢⎢⎣

0
Q S D

Ixx
Cl0

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎦ (35)

The measurement matrix is simply the identity matrix (
⇀

C F =
⇀

I6×6) since feedback consists of accelerometers and angular rate 
sensors. All states are directly measureable except for roll angle, 
which would come from integrating an angular rate sensor or 
using magnetometer-only or some combination of magnetometer, 
accelerometer, and angular rate sensor in an observer. For this for-
mulation 

⇀

D F = 0.

2.3. Actuator models

Actuator dynamics are modeled as a first order system with 
time delay and bias:

τ δ̇(t) + δ(t) = δC (t − tD) + δB (36)

This modeling approach is consistent with experimental char-
acterizations of low cost actuation technology as seen in Fig. 5.

The transfer function form of a first order system is used to 
represent the first order actuator dynamics:

H1(s) = 1/τ

s + 1/τ
(37)

The Laplace transform of a time delay is provided below

L
{
δ(t − tD)

} = e−tD s (38)
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Pade approximants are used to represent the time delay:

f P (s) ≈
∑N P

k=0 pksk∑N Q

k=0 qksk
(39)

The transfer function form of the Pade approximant is

H D(s) = pN P sN P + · · · + p1s + p0

qN Q sN Q + · · · + q1s + 1
(40)

Multiplying transfer functions yields Eq. (41). Assume that N =
N P = N Q .

H D1(s) = H D(s)H1(s)

= pN sN + · · · + p1s + p0

τqN sN+1 + (τqN−1 + qN )sN + · · · + (τq1 + q2)s2 + (τ + q1)s + 1

(41)

A state space model of the actuator with time delay and first 
order dynamics was constructed with the following state vector.

⇀
xD1 = [

x(N) x(N−1) . . . ẋ x
]T

(42)

The control for the actuator is simply the deflection command.

⇀
uD1 = δC (43)

Arranging terms in the transfer function provided in Eq. (41)
with the definitions of the state and control vectors produces the 
state transition matrix:

⇀

AD1 =
[

− (τqN−1+qN )

τqN
− (τqN−2+qN−1)

τqN
... − (τ+q1)

τqN
− 1

τqN
⇀
IN×N

⇀
0N×1

]
(44)

Likewise, the control matrix can be formed:

⇀

B D1 =
[

1
τqN

⇀

0N×1

]
(45)

The measurement matrix is provided below (
⇀

D D1 = 0)

⇀

C D1 = [ pN
τqN

pN−1
τqN

. . .
p1

τqN

p0
τqN

]
(46)

The state space model of the actuator with time delay and first 
order dynamics is for a given deflection. The flight model features 
roll, pitch, and yaw deflections. A comprehensive roll, pitch, yaw 
state space model may be constructed by building on the individ-
ual state space model outlined in Eqs. (42)–(46). The state vector 
and control vector are composed of three sub-vectors:

⇀
xA = [

⇀
xT

D1,p
⇀
xT

D1,q
⇀
xT

D1,r ]T (47)
⇀
u A = [

⇀
uT

D1,p
⇀
uT

D1,q
⇀
uT

D1,r ]T (48)

The state transition, control, and measurement matrices are as-
sembled below

⇀

A A =
⎡
⎢⎣

⇀

AD1,p
⇀

0N+1×N+1
⇀

0N+1×N+1
⇀

0N+1×N+1
⇀

AD1,q
⇀

0N+1×N+1
⇀

0N+1×N+1
⇀

0N+1×N+1
⇀

AD1,r

⎤
⎥⎦ (49)

⇀

B A =
⎡
⎢⎣

⇀

B D1,p
⇀

0N+1×1
⇀

0N+1×1
⇀

0N+1×1
⇀

B D1,q
⇀

0N+1×1
⇀

0N+1×1
⇀

0N+1×1
⇀

B D1,r

⎤
⎥⎦ (50)

⇀

C A =
⎡
⎢⎣

⇀

C D1,p
⇀

01×N+1
⇀

01×N+1
⇀

01×N+1
⇀

C D1,q
⇀

01×N+1
⇀

01×N+1
⇀

01×N+1
⇀

C D1,r

⎤
⎥⎦ (51)

Fig. 6. Body-fixed and measurement coordinate systems.

2.4. Measurement models

Accelerometers, angular rate sensors, and imagers are the pri-
mary feedback measurements of interest. A schematic of an arbi-
trary sensor at point M with axes oriented relative to the body-
fixed coordinate system is shown in Fig. 6.

The equation for the acceleration of two fixed points on a rigid 
body may be used to model the accelerometer off the projectile 
center-of-gravity. Integrated sensors suffer from errors in scale fac-
tor, misalignment, misposition, bias, and noise. An expression for 
an accelerometer corrupted by these errors can be developed:

⇀

f B
M = ⇀

SM
⇀

T M B

[d
⇀

V B
C G/I

d
t + ⇀

ωB/I × ⇀

V B
C G/I − ⇀

T T
B E [ 0 0 g ]T

+ ⇀

ω̇B/I × (
⇀
rCG→M + ⇀

εrCG→M ) + ⇀
ωB/I × ⇀

ωB/I

× (
⇀
rCG→M + ⇀

εrCG→M )

]
+ ⇀

εB + ⇀
εN (52)

Angular rate sensors measure the angular velocity of the body 
with respect to the inertial frame in body-fixed coordinates. 
A model for angular rate sensors with scale factor, misalignment, 
bias, and noise errors is provided.

⇀
ωB/I,M = ⇀

SM
⇀

T M B
⇀
ωB/I + ⇀

εB + ⇀
εN (53)

The scale factor matrix for any sensor can be written as the 
identity matrix with a scale factor error unique to each orthogonal 
axis:

⇀

SM =
[1 + εMS,xM

0 0
0 1 + εMS,yM

0
0 0 1 + εMS,zM

]
(54)

The transformation from any sensor axes to the body coordinate 
system, including misalignment errors, is given below

⇀

T M B

=
[ c(θM+εθM )c(ψM+εψM ) −s(ψM+εψM ) s(θM+εθM )c(ψM+εψM )

c(θM+εθM )s(ψM+εψM ) c(ψM+εψM ) s(θM+εθM )s(ψM+εψM )

−s(θM+εθM ) 0 c(θM+εθM )

]

(55)

The bias error of some sensors may feature a term due to the 
power-up process and an additional term which drifts in flight and 
can be modeled with a Markov process:

⇀
εB = ⇀

εB,0 + ⇀
εB,I (56)

The equation for the update of a Markov process follows

(
⇀
εB,I ),i = ρ(

⇀
εB,I ),i−1 + σB,I

√
1 − ρ2N (0,1) (57)

with the correlation ρ = e− ts
tc where ts is the sample time and tc

is the time constant.
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Fig. 7. Earth, line-of-sight, and body-fixed coordinate systems.

An imager model can be constructed by first defining the ge-
ometry in Fig. 7 between the Earth and line-of-sight coordinate 
systems associated with the inertial frame and the body-fixed co-
ordinate system associated with the body frame.

The relative position of the target and projectile in the inertial 
frame is
⇀
r I

P T =⇀
r I

O T −⇀
r I

O P (58)

The angles of the line-of-sight coordinate system with respect 
to the Earth coordinate system are

ψ I
L = tan−1

( r I
P T ,y

r I
P T ,x

)
(59)

θ I
L = tan−1

(
r I

P T ,z√
r I

P T ,x
2 + r I

P T ,y
2

)
(60)

The transformation matrix from Earth to line-of-sight coordi-
nates may be formed based on the angles between the coordinate 
systems.

⇀

T LE =
⎡
⎣ cθ I

L
cψ I

L
−sψ I

L
sθ I

L
cψ I

L
cθ I

L
sψ I

L
cψ I

L
sθ I

L
sψ I

L−sθ I
L

0 cθ I
L

⎤
⎦ (61)

The velocity of the target with respect to the projectile in the in-
ertial frame is
⇀

ṙ I
T /P =⇀

ṙ I
T /O −⇀

ṙ I
P/O (62)

The relative position in body-fixed coordinates can be written 
given the transformation matrix:

⇀
rB

P T = ⇀

T T
B E

⇀
r I

P T (63)

Using the relative position in body-fixed coordinates the angles 
of the target centroid as seen by a strapdown seeker can be de-
termined. Bias and noise may be added for modeling real-world 
measurements:

ψ B
L = tan−1

( rB
P T ,y

rB
P T ,x

)
+ εB + εN (64)

θ B
L = tan−1

(
rB

P T ,z√
rB

P T ,x
2 + rB

P T ,y
2

)
+ εB + εN (65)

Angular velocity of the line-of-sight coordinate system can be 
derived given the relation [7]:

⇀
ωL/I = 1

|⇀rP T |2
⇀
rP T ×⇀

ṙT /P (66)

Substituting the expression for the relative position and velocity 
of the target with respect to the projectile in the Earth coordinate 
system in the above equation for the angular velocity yields the 
angular velocity components of the line-of-sight coordinate sys-
tem:

ψ̇ I
L = r I

P T ,xṙ I
T /P ,y − r I

P T ,yṙ I
T /P ,x

r I
P T ,x

2 + r I
P T ,y

2
(67)

θ̇ I
L =

√
r I

P T ,x
2 + r I

P T ,y
2ṙ I

T /P ,z − r I
P T ,z

√
ṙ I

T /P ,x
2 + ṙ I

T /P ,y
2

r I
P T ,x

2 + r I
P T ,y

2 + r I
P T ,z

2
(68)

Transforming the line-of-sight rates to the line-of-sight coordi-
nate system and incorporating bias and noise errors characteristic 
of a practical imager yields the following expressions:

θ̇ L
L = θ̇ I

L cψ I
L
+ ψ̇ I

L sθ LI sψ I
L
+ εB + εN (69)

ψ̇ L
L = ψ̇ I

Lcθ I
L
+ εB + εN (70)

2.5. System models

Combined flight and actuator linear system dynamics models 
are provided for simulation and control design. The state and con-
trol vectors are made up of the flight and actuator with time delay 
and first order dynamics as derived earlier:

⇀
xA F = [⇀

xT
F

⇀
xT

A

]T
(71)

⇀
u A F = [ ⇀

uT
F

⇀
uT

A

]T
(72)

The state transition matrix is composed of the flight and actua-
tor state transition matrix and an additional term in the top-right 
of the matrix due to the coupling as given in Eq. (73):

⇀

A A F =
[

⇀

A F
⇀

B F
⇀

C A
⇀

03(N+1)×6
⇀

A A

]
(73)

The coupling reduces the controls matrix to the following equa-
tion. The top-left portion of the matrix is a block of zeros since the 
coupling has picked off the controls matrix for the flight model:

⇀

B A F =
[

⇀

06×3
⇀

06×3
⇀

03(N+1)×3
⇀

B A

]
(74)

The 
⇀

F A F vector is a concatenation of the 
⇀

F F vector followed by 
a row of zeros the length of ⇀

xA . Lastly, the measurement matrix 
for the system is provided

⇀

C A F =
[

⇀

C F
⇀

06×3(N+1)
⇀

03×6
⇀

C A

]
(75)

Another useful linear system model is for the flight dynamics 
and first order actuator dynamics without time delay. The state 
vector for this system is defined:

⇀
xF 1 = [φ p q r v̇ ẇ δp δq δr ]T (76)

The control vector is given below

⇀
uF 1 = [ δC,p δC,q δC,r ]T (77)

The state transition matrix is formed based on the dynamic 
modeling performed above:
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⇀

A F 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 Q S D

Ixx

D
2V Clp 0 0 0

0 0 Q S D
Izz

D
2V Cmq 0 0

0 0 0 − Q S D
I yy

D
2V Cmr

mD
I yy

Cnβ

CYβ

0 0 0 Q S
m CY β − Q S

mV CYβ

0 0 Q S
m C Zα 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0
0 Q S D

Izz
Clδp

0 0
mD
Izz

Cmα
C Zα

0 Q S D
Izz

Cmδq
0

0 0 0 − Q S D
I yy

Cnδr

0 0 0 0
− Q S

mV C Zα 0 0 0
0 − 1

τp
0 0

0 0 − 1
τq

0

0 0 0 − 1
τr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(78)

The control matrix takes the following form

⇀

B F 1 =

⎡
⎢⎢⎢⎣

⇀

06×1
⇀

06×1
⇀

06×1
1
τp

0 0

0 1
τq

0

0 0 1
τr

⎤
⎥⎥⎥⎦ (79)

Again, the static roll moment is included:

⇀

F F 1 =
⎡
⎣ 0

Q S D
Ixx

Cl0
⇀

07×1

⎤
⎦ (80)

Finally, the measurement matrix is shown:

⇀

C F 1 =
[⇀

I6×6
⇀

06×3
⇀

03×6
⇀

03×3

]
(81)

3. Guidance and flight control

The proportional navigation law with gravity compensation is 
given below in body-fixed components. This equation is one rep-
resentation of the proportional navigation family of guidance laws; 
there are many different variants in the literature [21].⎡
⎢⎣

aXB
C

aY B
C

aZ B
C

⎤
⎥⎦ = NG V C

⇀

T T
B E

⇀

T LE

⎡
⎣ 0

ψ̇ L
L

θ̇ L
L

⎤
⎦ + ⇀

T T
B E

⎡
⎣ 0

0
−g

⎤
⎦ (82)

In practice, only lateral acceleration can be altered with aero-
dynamic control, range-rate measurements or heuristics supply the 
closing velocity, angular rate sensors or magnetometers supply at-
titude, and an imager or spot detector provide the line-of-sight 
rates.

The linear system model without time delay that was derived 
earlier can be used for control purposes. The state space model 
can be defined with ⇀x = ⇀

xF 1, ⇀
u = ⇀

uF 1, 
⇀

A = ⇀

A F 1, 
⇀

B = ⇀

B F 1, 
⇀

F = ⇀

F F 1, 
⇀

C = ⇀

C F 1, and 
⇀

D = ⇀

D F 1.
The nonlinear measurement models outlined above can be uti-

lized to express the six feedback states.

⇀
y = [

φM
⇀
ωB/I,M f B

M(2) − f B
M(3)

]T
(83)

For this problem the desired response is to regulate the roll an-
gle to any of four angles determined by symmetry (based on flying 
skid-to-turn in an “X” configuration), maintain zero roll rate, pitch 
rate, and yaw rate, and achieve the lateral accelerations dictated by 
the guidance law. Mathematically, the reference signal is expressed 
as

⇀
r = [ 0 0 0 0 aY B

C −aZ B
C ]T (84)

Manipulation of the roll angle error signal is accomplished by 
the following function to ensure that the roll angle is controlled to 
the closest symmetry location

eφ =
{

(φM modulo π
2 ) − π

4 if φM modulo π < π
2

−(φM modulo π
2 ) + π

4 if φM modulo π ≥ π
2

(85)

A variety of control techniques may be applied given the lin-
ear actuator and flight dynamics, measurement models, and feed-
back control structure presented. A linear quadratic regulator, de-
rived using optimal control theory, was chosen [4]. In the linear 
quadratic regulator development, the control command is based 
on minimizing a cost function:

J =
∞∫

0

(⇀
xT ⇀

Q
⇀
x + ⇀

uT ⇀

R
⇀
u
)
dt (86)

The weightings for the tracking error 
⇀

Q and control effort 
⇀

R are 
positive semi-definite and allow the designer to balance tracking 
each desired state with specific control demand. The control law 
that minimizes the cost function is

⇀
u = −⇀

K
⇀
x (87)

The gain matrix can be found through the control effort weight-
ing, the controls matrix, and the matrix 

⇀

P :

⇀

K = ⇀

R−1⇀

BT ⇀

P (88)

The 
⇀

P matrix is obtained by solving the algebraic matrix Ric-
catti equation:

⇀

AT ⇀

P + ⇀

P
⇀

A − ⇀

P
⇀

B
⇀

R−1⇀

BT ⇀

P + ⇀

Q = 0 (89)

Delays between the time of commanded control and when the 
effect of control is realized in the system dynamics occur due 
to a variety of physical processes and can add significant diffi-
culty to the control problem. Additionally, the time delay magni-
tude may be higher when utilizing low cost technologies, such as 
commercial-off-the-shelf servomechanisms. The Smith predictor is 
a control strategy for dealing with time delays [17]. A block dia-
gram of the Smith predictor algorithm for the projectile problem is 
given in Fig. 8. The linear system model without and with time de-
lay are used in augmenting the feedback system and the nonlinear 
actuator, flight, and measurement models represent ground truth 
in simulation. Measurements are a function of the flight states and 
controls.

The basic idea of the Smith predictor is that a model of the 
system dynamics with time delay can be used to negate the true 
system dynamics with time delay. Controllers that do not inher-
ently consider the time delay (such as the linear quadratic regu-
lator) can then be applied since the resulting feedback signal has 
the time delay effectively removed.

The linear system models without and with time delay are 
propagated forward in time in implementation of the Smith pre-
dictor. Feedback is altered by the following equation

⇀
u = ⇀

K (
⇀
yF 1 + ⇀

yM − ⇀
y A F −⇀

r) (90)
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Fig. 8. Smith predictor.
Fig. 9. High maneuverability airframe.

Table 1
Mass properties.

Property μ Unit σ Unit

D 0.083 m 0.12 %
C G N 0.285 m from nose 0.12 %
L 0.427 m 0.12 %
m 2.65 kg 0.41 %
I X X 0.0034 kg m2 0.88 %
IY Y = I Z Z 0.0388 kg m2 0.71 %

Table 2
Aerodynamic data at Mach 0.65 for C G N,A = 0.264 m from nose.

Property μ Unit σ Unit

C X0 0.366 – 0.86 %
CYβ

= C Zα 10.314 1/rad 1 %
Cnβ

= Cmα −5.642 1/rad 2 %
Cl0 0.0889 – 5 %
Clp −11.384 – 5 %
Cmq = Cnr −88.820 – 15 %
C P X 1.459 calibers forward CG 2 %
C P R 0.781 calibers from spin axis 2 %
C M

X0
0.0042 – 0.86 %

C M
lα

−1.075 1/rad 5 %
C M

Nα
1.377 1/rad 1 %

C M
mα

2.010 1/rad 2 %

4. System characteristics

Models for the actuator, flight, and measurements are driven 
by input system characteristic data. Performing simulations with 
appropriate mean and uncertainty in the system characteristics is 
critical to assessing guided flight performance. An illustration of 
a fin-stabilized, canard-controlled projectile housing the required 
sensors is presented at the top of Fig. 9.

The mass properties (mean and uncertainty) of this projectile 
are given in Table 1.

The launch and flight is subsonic. Some aerodynamic data for 
this airframe, as obtained from computational fluid dynamics sim-
ulations at Mach 0.65, is provided in Table 2.

Table 3
Actuator properties.

Property μ Unit σ Unit

τ 0.015 sec 20 %
tD 0.030 sec 20 %
δB – – 1 deg

Table 4
Measurement properties.

Property σ Unit

εθM = εψM (integrated misalignment) 0.5 deg
εrCG→M (accelerometer) 0.0005 m
εM S (accelerometer) 1.0 %
εB,0 (accelerometer) 1.0 m/s2

εN (accelerometer) 0.1 m/s2

εM S (gyroscope) 2.1 %
εB,0 (gyroscope) 0.016 Hz
εN (gyroscope) 0.016 Hz
εB (imager boresight angles) 10 deg
εB (imager boresight angular rates) 0.0016 Hz
εN (imager boresight angular rates) 0.00016 Hz
εB (closing velocity) 0.1 m/s

Table 5
Launch variation.

Property σ Unit

φ 2π (uniform) rad
θ 0.004014 rad
ψ 0.005411 rad
V 3.7 m/s
p 0.16 Hz
q 0.16 Hz
r 0.16 Hz
Target position 2.0 m
Target velocity 0.5 m/s

Actuator parameters given in Table 3 are representative of low 
cost, high volume manufactured servomechanisms. The update rate 
of the actuator was 500 Hz.

Feedback measurement characteristics are given in Table 4. 
Feedback update rate was 1000 Hz.

The variation in the initial conditions of the projectile and tar-
get are provided in Table 5. The target was modeled as a constant 
velocity, straight-line motion.

The controller parameters, found via stability analysis and tun-
ing in the linear and nonlinear simulations are given in Table 6. 
The update rate of the flight controller was 500 Hz.

5. Results and discussion

The theory for the flight, actuator, and measurements were 
implemented in simulation to assess multidisciplinary cost-perfor-
mance drivers and demonstrate how control algorithms may be 
used to reduce the actuator burden.

A stability analysis was undertaken. The eigenvalues in Fig. 10
were shaped for desired performance with the linear flight and 
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Table 6
Controller properties.

Property Value

Rw 10
Qw 0.05
Qφ 100
Qp 0.05
Qq 10
Qr 10
Qv̇ 0.8
Qẇ 0.8

Fig. 10. Characteristic values of linear system dynamics.

first order actuator model and system characteristics provided ear-
lier. Inspection of the controlled and uncontrolled (ballistic) data 
illustrates how the control increases the damping and frequency 
of the response. This airframe is statically unstable therefore the 
uncontrolled response has positive real roots.

Linear simulations were performed to assess ballistic flight be-
havior and further tune the flight controller for the desired per-
formance. The flight control algorithm was implemented in simu-
lation. The results in Figs. 11–13 show performance of the linear 
quadratic regulator for a time delay of zero with nominal initial 
conditions.

The roll dynamics and control demand are provided in Fig. 11. 
Inspection of the roll angle data illustrates the achieved roll an-
gle, the roll error signal and the desired roll signal. The roll angle 
error signal has been manipulated as outlined previously to main-
tain configuration symmetry of the moveable aerodynamic surfaces 
(i.e., the error is not the difference between the achieved and de-
sired signals as shown in the plot). The roll rate plot provides sim-
ilar data (desired, achieved, error). The commanded and achieved 
(based on actuator dynamics) roll deflection angle is also given. 
Overall, this control design yields satisfactory roll response with 
reasonable control effort. Adequate control of the roll dynamics is 
necessary for proper pitch and yaw control.

Fig. 12 shows the pitch dynamics for a desired pitch accelera-
tion of 50 m/s2. Pitch deflections oscillate initially to sufficiently 
damp angular rate. The desired pitch acceleration is tracked to less 
than 1 m/s2 error by deflecting in pitch to about 5 deg.

A Monte Carlo study was performed to assess the influence 
of system uncertainties on the controlled flight performance with 
tD = 0. The initial conditions, mass properties, aerodynamic co-
efficients, actuator characteristics, and measurement errors were 
Fig. 11. Linear roll system dynamics response and deflection commands (linear quadratic regulator control with tD = 0).
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Fig. 12. Linear pitch system dynamics response and deflection commands (linear quadratic regulator control with tD = 0).
varied according to the parameter distributions supplied earlier. 
Linear simulations were run for each Monte Carlo trial for 1.5 s
and the error between the desired and achieved state were tab-
ulated. The mean (shown in solid circle) and +/− standard de-
viation (shown in “X”) of these errors is given in Fig. 13. Differ-
ent colors in the figure represent different states. The error bud-
get for the system uncertainties was scaled by different factors 
(0.1, 1, 2, 3) for trend analysis. With the exception of roll angle, 
the mean controlled state errors do not vary much. Roll angle is 
biased about 1–2 deg due to the fin cant. This effect could eas-
ily be accounted for with some feedforward action. The standard 
deviation of the errors for all states but roll, pitch, and yaw rates 
grows linearly with the error budget factor. The angular rate errors 
are low since the control is effective and damping moments are 
active.

The pitch dynamics are isolated to investigate the effects of 
time delay. Linear simulations were performed with a non-zero 
time delay. The unstable behavior of the linear quadratic regu-
lator for non-zero time delay is evident in Fig. 14. Commanded 
pitch deflections oscillate back and forth at the saturation lev-
els and produce poor tracking in pitch acceleration and pitch 
rate.

The value of modeling the system dynamics with time delay 
in the controller is apparent when using the Smith predictor. The 
Smith predictor was implemented in simulation and linear results 
with non-zero time delay are provided in Fig. 15. Augmenting the 
linear quadratic regulator with the Smith predictor yields a satis-
factory system response, especially when compared with the data 
in Fig. 14. The desired pitch rate and pitch acceleration is met with 
reasonable pitch deflection commands.

Fig. 13. Linear system simulation – Monte Carlo response trades. (For interpretation 
of the references to color in this figure, the reader is referred to the web version of 
this article.)

Nonlinear system simulations were conducted to further inves-
tigate the flight control and demonstrate guidance performance 
against moving targets. The projectile was launched at sea level 
and muzzle velocity of 250 m/s with the target initially located 
along the line-of-fire 1000 m downrange. The target was moving 
5 m/s in the crossrange direction. In addition to the aerodynamics, 
mass properties, actuator, and feedback measurement characteris-
tics perturbed in the linear Monte Carlo simulations, the atmo-
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Fig. 14. Linear pitch system dynamics response and deflection commands (linear quadratic regulator control with tD �= 0).

Fig. 15. Linear pitch system dynamics response and deflection commands (linear quadratic regulator and Smith control with tD �= 0).
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Fig. 16. Nonlinear system simulation – trajectory.

Fig. 17. Nonlinear system simulation – roll, pitch, yaw system dynamics response.
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Fig. 18. Nonlinear system simulation – individual canard deflection commands.
sphere (e.g., density, sound speed, wind magnitude and direction) 
was also varied in nonlinear system simulations.

A sample Monte Carlo trajectory with system characteristics 
outlined previously is provided in Fig. 16. The projectile (solid line) 
maneuvers toward the target (dotted line) with a small point-of-
closest-approach. The target moves about 25 m in crossrange over 
approximately 6 s of projectile time-of-flight. The projectile does 
not decrease much in Mach over the 5 s flight. The angles-of-
attack, dictated primarily by the desired lateral accelerations from 
the guidance law, are less than 5 deg and well within the bounds 
of the high maneuverability airframe.

The performance of the roll, pitch, and yaw control in the non-
linear simulations is provided in Fig. 17. The desired, achieved, and 
measured (i.e., corrupted truth) states are given in the relevant 
plots for all nonlinear system simulations. Measurement corruption 
(e.g., noise) typical of low cost devices is evident when comparing 
measured and truth data. Both roll angle and roll rate feature good 
response. Pitch and yaw rates are controlled to near zero as desired 
which is within the measurement uncertainty. Comparing the de-
sired pitch and yaw accelerations, computed from the proportional 
navigation guidance law with errors in the line-of-sight rate esti-
mates, and the achieved and measured pitch and yaw accelerations 
shows errors less than 1 m/s2 error of the majority of flight. The 
feedback measurement noise illustrated in the plots could be mit-
igated with an estimation algorithm such as a Kalman filter.

The roll, pitch, and yaw deflection commands are turned into 
individual moveable aerodynamic surface commands as outlined 
earlier. The individual commands and truth response are provided 
in Fig. 18. Roll deflection angles were about 1 deg to counteract the 
fin cant after the initial roll control action near launch. The deflec-
tions are larger near launch due to initial control action and vary 
slowly with amplitudes under 5 deg throughout flight. Amplitude 

Fig. 19. Nonlinear system simulation – Monte Carlo miss distance.

increases sharply just prior to intercept. Overall, modest deflections 
are necessary to achieve the desired pitch/yaw rates and pitch/yaw 
acceleration response. Measurement errors (mainly noise) propa-
gate through the controller and appear as high frequency variation 
in the canard commands. Filtering could be applied if these effects 
were harmful to overall performance.

A batch of 100 Monte Carlo flights were simulated and the 
point-of-closest-approach was tabulated. Overall, 94% of the pro-
jectiles flew within 0.1 m of the moving target. A histogram of the 
flights within 0.1 m of the target is provided in Fig. 19. Implement-
ing the theoretical models outlined above in simulation with the 
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Fig. 20. Nonlinear system simulation – Monte Carlo miss distance trades.

current characteristics for this GNC system yields miss distances 
often less than 0.02 m.

Monte Carlo trials were performed in the nonlinear system sim-
ulation to quantify the relationship between guided performance 
and system uncertainties. Again, the parameter distributions out-
lined above were used in the simulations. All uncertainties were 
scaled by a factor to illustrate trends. Monte Carlo simulations 
were conducted by isolating each parameter category (e.g., initial 
conditions, mass properties) and also running all parameter errors 
together.

These results are provided in Fig. 20. Comparing the initial con-
dition only cases with the all parameter error cases suggests little 
contribution from initial condition variations. Miss distance will be 
influenced by initial conditions if the combination of targeting and 
fire control are so poor that the projectile cannot physically inter-
cept the target.

Mass properties and aerodynamics uncertainties do not greatly 
contribute to the overall miss distance. Indeed Monte Carlo cases 
were able to be run with 6 times the nominal error budget for 
these categories without appreciable changes in the miss distance. 
Intolerance of the miss distance to these parameters is due to 
the nature of the feedback control strategy and the magnitude of 
round-to-round physical (mass and aerodynamics) variability.

Miss distance is also not driven by the actuator characteristics 
and variability for this system. Miss distances for the actuator only 
cases are relatively small compared to the all parameter cases. Ad-
ditionally, miss distance does not vary significantly even when the 
nominal actuator variability is scaled by a factor of 3.

Measurement errors are the main contributor to miss distance. 
Monte Carlo miss distances for the measurement only and more 
specifically the line-of-sight rate errors are similar in magnitude 
to the all parameter cases. These results suggest proper measure-
ment design (e.g., sensors, electronics) is critical to guided system 
performance.

6. Conclusions

This paper hypothesized that projectiles can be guided using 
low cost technologies by accommodating poor sensor and actua-
tors with algorithms and performing high fidelity multidisciplinary 
modeling and simulation with realistic input data. The nonlinear 
equations of motion for projectile flight and aerodynamic modeling 
were presented. Actuator dynamic modeling was performed. Non-
linear measurement models were discussed. Flight model states

were manipulated to simulate the response of accelerometers, gy-
roscopes, and imagers necessary for guidance and flight control. 
Manipulation of these nonlinear models into linear system mod-
els were undertaken for airframe characterization and control de-
sign. A framework for guidance and flight control was built. This 
paper developed a suite of high fidelity model-based flight con-
trollers. Algorithms were designed specifically to facilitate low per-
formance hardware such as actuators with significant time delays 
(Smith predictor). Practical system characteristics were provided 
to conduct realistic multidisciplinary simulation and identify cost-
performance drivers.

The theory and guidance and flight control strategy was imple-
mented in simulation to illustrate essential features of low cost, 
high maneuverability GNC systems. Results supported the hypoth-
esis by showing that controlled performance can be drastically im-
proved by designing algorithms which explicitly consider low cost 
components. Monte Carlo analysis of multidisciplinary modeling 
and simulations suggested that measurement errors drive guided 
performance.
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