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Smart projectile state estimation is a challenging task due to highly nonlinear vehicle dynamic behavior and

unreliable or noisy sensor feedback. Although Kalman-filter-based algorithms are currently the primary means of

sensor fusion and state estimation for smart weapons applications, they are limited in estimation accuracy, their

ability to combine data from a wide variety of sensors, and their ability to recognize and reject erroneous feedback.

This paper explores the use of evidence theory (or Dempster–Shafer theory) for projectile state estimation purposes.

Evidence theory offers a generalized framework capable of incorporating feedback from a wide variety of sensors

with little a priori knowledge about sensor noise characteristics. The framework’s main strengths are its ability to

manage varying levels of dynamic uncertainty between sensors and its capability to recognize and report conflicting

sensor feedback. The paper beginswith an overview of evidence theory and a discussion of its strengthswhen applied

to projectile state estimation. Then an evidence-theory-based filter is described, and an example roll-angle estimator

is presented. Results are discussed and performance is compared with an extended Kalman filter. The ability to

identify and eliminate malfunctioning sensors from the estimation process proves to be a key advantage of the

proposed design over current methods.

Nomenclature

b = magnetometer bias
IB, JB,KB = unit vectors in the projectile body-fixed frame

B
INR, JNR,KNR = unit vectors in the projectile no-roll frame NR
IS, JS,KS = unit vectors in the sensor reference frame S
KR = roughening coefficient
kR = tuning parameter for particle roughening

procedure
k� = belief assigned to empty set
MN ,ME,MD = north, east, down components of Earth’s

magnetic field
Mp = maximum distance between particles
~Mx, ~My, ~Mz = Earth’s magnetic field components resolved in

body frame
M�J ,M

�
K = JB-aligned and KB-aligned single-axis

magnetometer outputs
�M�J , �M�K = normalized magnetometer outputs
NS, Ni, N� = number of particles resampled from singleton,

nonsingleton, and uncertainty belief
assignments

nmag = magnetometer Gaussian noise
S = magnetometer scale factor
s = distance vector from solar sensor to sun
�v� = normalized thermopile sensor output
x�k;i, x

�
k;i = particle before and after resampling at time

step k
�ij, �ik = half-angles defining solar sensor field of view
� = frame of discernment

�, �,  = projectile Euler roll, pitch, and yaw angles
�M = phase angle relating magnetic field and body

frame

I. Introduction

I NCREASING availability of low-cost robust sensor technology
has enabled weapons designers to outfit gun-launched projectiles

with full guidance and control capability. However, due to size, cost,
and performance constraints, smart weapons systems typically
cannot leverage precise Global Positioning System (GPS) and
inertial measurement unit technology developed for missiles and
aircraft. Instead, weapons designers have turned to component-level
integration of low-cost microelectromechanical systems (MEMS)
sensors such as accelerometers and rate sensors, magnetometers,
thermopiles, and other small robust sensors for an alternative state
estimation solution. Although this sensor integration approach offers
significant cost and size advantages, data fusion algorithms are
challenged to combine inputs from sensors with widely varying
signal characteristics, update rates, and measurement confidence.
These difficulties, combinedwith highly nonlinear vehicle dynamics
caused by high spin rates or discontinuous actuation techniques, have
limited estimation accuracy achievable by standard extended
Kalman filters. There is a critical need to develop new nonlinear
filtering techniques that can combine incomplete feedback from a
wide variety of sensors, handle dynamic sensor reconfiguration, and
produce accurate state estimates in the presence of large mea-
surement uncertainty, unreliable sensors, and nonlinear vehicle
dynamics.

For themost part, the challenge of designing the next generation of
state estimation algorithms lies in combining nonlinear dynamic
models with advanced information fusion techniques that eschew
Gaussian error assumptions. Recently, many researchers have been
pursuing alternative nonprobabilistic information fusionmethods for
use in nonlinear estimators (for instance, Dempster–Shafer theory
[1–3], possibility theory [4,5], and fuzzy set theory [6,7]). Although
belief combination and decision-making differ across each of these
methods, they collectively form an alternative to traditional Bayesian
filtering in their rigorous treatment of uncertainty and ability to
assign evidential weight to nontraditional feedback information.
Recently, a framework called finite set statistics (FISST) has been
proposed [8–10] that attempts to unify many nonprobabilistic
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methods under a single framework similar to standard Bayesian
statistics. The advantage of such a unifying theory is that FISST can
be applied to multisensor, multitarget fusion problems using well-
known probabilistic formalisms without knowledge of the rather
complex theory of random set mathematics. The so-called proba-
bility hypothesis density filter [11] is an implementation of FISST
that has been used successfully in multisensor fusion andmultitarget
tracking problems.

This paper explores the use of a relatively simple nonprobabilistic
technique called evidence theory [1–3] (or, equivalently, Dempster–
Shafer theory). Evidence theory is a generalized Bayesian frame-
work that offers a technique to choose between a set of propositions
given evidence provided from a variety of sources. It is unique in that
it allows assignment of support not only to single propositions, but
also to finite sets of propositions. A key strength of evidence theory is
that no restrictions are placed on evidential data—information need
not even be numerical. Although the framework enables an algebraic
manipulation of quantities of evidence, the link between these
quantities and the original evidential data, whether numerical or
otherwise, is left completely general and is determined by the esti-
mator designer. Thus, sensor fusion can be performed with
unprecedented flexibility since the framework can incorporate any
piece of data useful to the overall estimation problem.

Over the past several decades, numerous researchers have
investigated the use of evidence theory for a wide variety of sensor
fusion applications, including geoscience image analysis [12],
autonomous mobile robots [13,14], context-sensing human–
computer interaction [15,16], and engine fault diagnosis [17]. Most
recently, Zribi et al. [18] introduced an evidence-theory-based
architecture for vehicle localization, effectively combining GPS,
odometer, and digital map data to determine an estimate for two-
dimensional vehicle location. An underlying theme throughout this
previous research is that data is often combined from a diverse set of
sensors offering incomplete information at varying levels of
accuracy.

This paper develops an evidence-theory-based state estimator for
smart projectile applications. Several key elements of the proposed
design prove advantageous comparedwith traditional smartweapons
estimation methods. First, the estimator’s use of evidence theory
mitigates the need to provide highly accurate a priori sensor error
distributions, which can be difficult to obtain formany nontraditional
sensor components included in MEMS constellations. In addition,
sensor conflict is characterized and used within the estimator to
identify and remove malfunctioning sensors from the estimation
process. Finally, the estimator uses evidence theory to combine belief
assigned not only to single states but also to indiscriminate groups of
states, allowing it to rigorously handle nontraditional information
like heuristic knowledge of the vehicle trajectory or very-low-
resolution sensor feedback. The paper beginswith a brief overviewof
evidence theory and how it has been applied to the sensor fusion
problem. Then an evidence-theory-based estimator is developed
given an arbitrary number of sensors. Resampling methods and
sensor conflict measures are described in detail. An example roll esti-
mator is presented, and estimation results for an example trajectory
are compared with those from an extended Kalman filter. This
example demonstrates the ability of the evidence-theory-based esti-
mator to combine awide variety of sensor inputs and handle dynamic
reconfiguration when various sensors are deemed unreliable or
inoperative.

II. Overview of Evidence Theory

A. Theoretical Background

The mathematical theory of evidence, initially developed by
Dempster [1,2], presents a framework for combining sources of
information to generate a joint inference based on all available pieces
of data. A key strength of this nonprobabilistic approach is that it can
rigorously incorporate information other than that provided from
digitized sensor feedback: for instance, heuristic knowledge about
the likely vehicle trajectory or discrete sensors that provide bounds
on possible states but lack the resolution to provide highly accurate

information. Furthermore, evidence theory provides the means to
assign belief to an uncertainty class that provides useful information
regarding estimation error.

In the Dempster–Shafer reasoning system, all possibilities for a
given outcome (or state estimate in this case) are enumerated in a so-
called frame of discernment. For instance, consider a case in which a
state estimator wishes to determine vehicle position in a single
dimension among three possibilities given by x1, x2, or x3. The frame
of discernment considers the possibility of each state individually as
well as any possible combination of states and is given by

�

�ffx1g;fx2g;fx3g;fx1 orx2g;fx2 orx3g;fx1 orx3g;fx1 orx2 orx3g;�g
(1)

where � denotes the possibility that the location is something other
than x1, x2, or x3 (for the sake of notational simplicity, the set brackets
around singleton sets x1, x2, and x3 will be dropped for the remainder
of the paper). Note that the frame of discernment covers all
possibilities for the state and thus contains a total of 2N possibilities
where N is the number of singleton propositions. Each sensor
contributes its information by distributing its belief over �. This
assignment by sensor Si represents the sensor’s belief in a given
mutually exclusive proposition called the belief mass function and is
represented bymi. According to sensorSi, the overall probability that
the vehicle is located at x1 lies somewhere in the interval

prob i�x1� � �beli�x1�; pli�x1�� (2)

where beli�x1� represents the belief confidence and pli�x1� represents
the plausibility confidence. The belief confidence accounts for all
evidence from sensor Si that directly supports the proposition x1 and
is given by the summation of belief masses that point to proposition
x1,

bel i�x1� �
X
A	x1

mi�A� (3)

where A in this case represents a focal element of�. The plausibility
function, which describes the degree of support for all propositions
that include x1, is given by

pl i�x1� � 1 � beli� �x1� �
X

A\x1≠�

m�A� (4)

where �x1 represents the complement of set x1. The definitions of
belief and plausibility can be applied equally to singleton and
nonsingleton sets.

Although sensors and sources of information can assign belief to
both single states and groups of states (singleton and nonsingleton
propositions in the parlance of evidence theory), they can also assign
belief to an uncertainty class represented by the frame of discernment
itself,�. This represents the reluctance to provide any information at
all about the state (for instance, if a GPS receiver cannot obtain a
navigation solution, it would be incapable of offering useful position
information). Since a sensor’s belief assignment must total unity, a
sensor that could not currently offer any information about the state
would assign zero belief to all elements of the frame of discernment
and a belief of 1 to the uncertainty class �.

Evidence theory provides a method for combining sensor Si
observationmi with sensor Sj observationmj called Dempster’s rule
of combination (also called the conjunctive combination rule):

�mi 
mj��x1� �

P
A\B�x1

mi�A�mj�B�

1 �
P

A\B��
mi�A�mj�B�

(5)

Using this rule, belief functions between two sensors can be
combined, and the joint belief distribution is normalized such that
�mi 
mj���� is 0. Because the conjunctive rule is both commutative
and associative [19], it can be used iteratively to combine sensor
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inputs from an arbitrary number of sources. Note that determination
of the beliefmass valuemi from sensor information is left completely
general and can be performed through a variety of methods (i.e.,
measurement equations, rule-based techniques, etc.). Given a set of
belief-plausibility intervals for each element of the frame of
discernment, various methods can be used to select the most likely
conclusion. In general, the output at the conclusion of the sensor
fusion process need not be restricted to a single state, but could be a
combination of states.

Although evidence theory is sometimes referred to as a
generalized Bayesian framework, it possesses key differences
compared with Bayesian estimation (on which particle filtering is
based). Evidence theory allows assignment of probability to an
uncertainty class (actually, the union of all propositions), thereby
acknowledging uncertainty in the decision process. Bayesian theory
does not, requiring that probability mass be divided among singleton
propositions evenwhen evidencemay point indistinctly to a group of
states rather than a single one. Thus, Bayesian theory offers no
convenient representation for ignorance or uncertainty and can cause
over-committal to individual propositions based on indistinct pieces
of evidence. The consideration of nonsingleton sets that evidence
theory offers is even more crucial in constructing a flexible esti-
mation framework that avoids large-scale reconfiguration as sensors
fluctuate between operational and nonoperational modes, since total
belief can be assigned to the uncertainty class whenever a sensor
becomes nonoperational. It can be shown that evidence theory
collapses to Bayesian theory when unions of propositions are not
considered and the frame of discernment is restricted only to
singleton propositions.

B. Evidence Theory Sensor Fusion Example

Consider a very simple case in which two sensors on a flight
vehicle measure distance from the ground, and possible values for
distance can be either x1 or x2. Thus, the frame of discernment is
given by �� ffx1g; fx2g; fx1 or x2gg. The empty set is not included
in � because it is assumed that the frame of discernment is
exhaustive, meaning x1 and x2 are the only possible values. Sensor A
is used to assign a probability mass function given by

mA�x1� � 0:7 mA�x2� � 0:1

mA�fx1 _ x2g� � 0:1 mA��� � 0:1 (6)

This can intuitively be understood as a 70% likelihood of x1 being
the current state, a 10% likelihood of x2 being the current state, a 10%
likelihood that we cannot distinguish between x1 and x2 but one of
them is the current state, and a 10% chance that the sensor is
completely ignorant as to the current state. SensorB is used to assign
a probability mass function given by

mB�x1� � 0:3 mB�x2� � 0:4

mB�fx1 _ x2g� � 0:25 mB��� � 0:05 (7)

Using Eqs. (3) and (4), the belief and plausibility functions can be
computed for these two sensors, given by

belA�x1� � 0:7 belA�x2� � 0:1 belA�fx1 _ x2g� � 0:9

plA�x1� � 0:9 plA�x2� � 0:3 plA�fx1 _ x2g� � 1:0 (8)

belB�x1� � 0:3 belB�x2� � 0:4 belB�fx1 _ x2g� � 0:95

plB�x1� � 0:60 plB�x2� � 0:70 plB�fx1 _ x2g� � 1:0 (9)

Using Dempster’s rule of combination given in Eq. (5), the mass
functions of sensors A and B can be combined to form

mAB�x1� � 0:6957 mAB�x2� � 0:2174

mAB�fx1 _ x2g� � 0:0797 mAB��� � 0:0072 (10)

Belief and plausibility functions can then be computed using the
fused sensor belief function in (10) and used to determine a state
estimate along with a level of confidence associated with that
estimate. The manner in which this is performed is called a decision
rule. Numerous candidates for decision rules have been proposed by
Lee et al. [12]. Ristic and Smets [20], Smets [21,22], and Cobb and
Shenoy [23] have further proposed methods of transforming belief
functions to probability densities so that decisions can be made in
accordance with traditional Bayesian methods.

C. Conflicting Belief Assignments

The conflict between belief functions from different sensors is
important to characterize in that it represents the disagreement be-
tween various sources of information. Conflict determination can
help diagnose sensor failures and provide a measure of overall
reliability of the resulting estimate. Generally, estimates obtained
from combining highly conflicting belief distributions should be
viewed as having higher uncertainty. Traditional formulations of
belief function theory use the belief assigned to the empty set (k�)
after application of Dempster’s rule as a measure of sensor conflict.
For instance, if the belief functions from two sensors have little
overlap, application of Dempster’s rule results in significant belief k�
being assigned to the empty set (the combined belief function is then
normalized using k� so that belief assigned to all nonempty set
elements adds to 1). However, Jousselme et al. [24] and Martin et al.
[25] have shown that nonzero belief is still assigned to the empty set
even if Dempster’s rule is used to combine two belief functions that
are identical (thus, the rule is nonidempotent). Therefore themeasure
is of limited use since a valid conflict measure would intuitively
produce zero if applied to two identical belief distributions.

Numerous authors [24–28] have proposed alternative conflict
measures, each with their own unique characteristics. Jousselme
et al. [24] andMartin et al. [25] derived a conflict measure based on a
distancemetric defined for belief functions. Suppose sensorsA andB
assign belief distributions mA and mB over the same frame of
discernment. Let mA and mB represent column vectors of these
distributions ordered in a given manner. Then the conflict between
sensors A and B is defined by a distance metric given by

conf �A;B� �
��������������������������������������������������������
1
2
�mA �mB�T �D�mA �mB�

q
(11)

where �D is a 2N � 2N matrix with elements given by

�D�Pi; Pj� �
�
1 if Pi � Pj � �
jPi\Pjj
jPi[Pjj else

(12)

In Eq. (12), Pi and Pj represent the proposition combination at

element �i; j� of matrix �D, and the vertical bars represent the
cardinality of the set. It can be shown that this conflict measure
applied to identical belief distributions will yield 0, whereas the
measure applied to distributions with no focal elements in common
will yield 1.

III. Evidence Theory State Estimator Design

This section describes the design of an evidence-theory-based
state estimator. The proposed estimator is in some ways a gener-
alization of the particle filter, which considers nonsingleton prop-
ositions. First, an overview of the estimator design is presented and
key features are highlighted. Then new resampling techniques are
described in which the particle set is updated using belief assigned to
both singleton and nonsingleton propositions. Conflict measures and
their use in fault detection and isolation are described. A final section
discusses tractability of the estimation problem.

A. State Estimator Overview

The primary difference betweenBayesian and evidence theories is
that evidence theory allows belief to be distributed over both
singleton and nonsingleton propositions. Therefore, the estimator
presented here has a similar structure to standard implementations of
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the particle filter, with certain key differences that allow handling of
nonsingleton sets. A diagram of the estimator is provided in Fig. 1.
First, an initial particle set is generated (usually a uniform
discretization of the state space). When measurements are obtained,
sensors assign belief over the particle set, either to singleton particles
or to nonsingleton groups. These belief assignments are then
iteratively combined using the conjunctive combination rule. In
addition, conflict metrics are determined for each pair of sensors
using the distancemetric in Eq. (11). Thus, for n sensors, n�n � 1�=2
conflict metrics are generated. The singleton state with the highest
belief is then chosen as the state estimate at the current time. If the
uncertainty class � has the highest belief, the state estimate is set
equal to that at the previous time step pending information with less
uncertainty. The belief distribution is used in the particle resampling
step, which will be described in a subsequent section. Following
resampling, particles are propagated to the next measurement time
using a nonlinear dynamic model. In addition, conflict measures are
used to determine sensor performance, and those producing feedback
that is continually in disagreement with the majority of other sensors
are removed from the measurement update process.

Note that, like particle filtering, the estimator proposed here
discretizes the state space. This is in contrast to Kalman filters, which
consider the state space to be continuous and compute estimated
values accordingly. Like the particlefilter, the evidence-theory-based
filter maintains a discrete set of particles representing possible values
of the state and thus has somewhat limited resolution for reasonable
numbers of particles. However, this discretization of the state space
can be beneficial in rejecting bad sensor feedback that lies far outside
the bounds of the current particle space. The combined belief mass
function computed at each measurement update by the evidence-
theory-based filter differs fundamentally from the a posteriori
probability density function computed by the particle filter in that the
belief mass function cannot be interpreted directly in the context of
Bayesian statistics. Numerous authors [21–23] have proposed
methods for transforming belief functions to more traditional
probability density functions during the decision-making process.

Important differences between the proposed approach and FISST-
based filtering methods developed for multitarget state trackingmust
also be pointed out. The recursion process for FISST-based filtering
methods has the same structure as Bayesian recursion, except
integrals of probability densities are replaced by so-called set-
integrals, and the densities themselves are replaced by corresponding
belief functions [9]. Because of their representation of themultitarget
state as a random finite set, the multitarget state and multitarget
measurement set within FISST implementations can change in
dimensionality over time. In contrast, the filter proposed here does
not maintain the same level of generality since it is primarily
designed for dynamic system state estimation rather than target
tracking. Belief functions are used solely to handle point and set
measurements in a rigorous manner and allow for measurement
disagreement to be quantified. A set of singleton particles, rather than

random finite sets, is used to represent the state posterior density, and
the dimension of this particle set is held fixed throughout the filtering
process.

Akeyelement of the proposedfilter design is sensor fault detection
and isolation (FDI) through the use of belief function conflict
measures. FDI is not a new idea and has been pursued by numerous
researchers exploring fault-tolerant filtering methods. A simple
technique for fault rejection in linear systems is an outlier rejection
scheme for Kalman filters, in which innovations beyond a specified
distance (typically 3�) from the current state error covariance are not
included in measurement updates [29]. Such schemes inherently
assume accuracy of filter tuning parameters that may not always be
the case and may have trouble distinguishing between measurement
outliers and fast dynamic response. Interacting multiple-model
(IMM) estimation is another well-known approach [30–32] in which
several filters are propagated representing various possible failure
modes. Although multiple-model approaches are applicable to both
linear [29] and nonlinear systems (through the use of particle filters
[33]), computational intensity can be high especially for large
numbers of sensors or failure modes. Two strengths of the FDI
method proposed here become apparent in comparison with
traditional fault-tolerant estimation methods. First, in the proposed
method sensor feedback is evaluated independently of filter tuning,
and failure probabilities are not required inputs to the sensor-removal
process (as they are in many IMM implementations [30]). Second,
the computational burden is reduced since conflict measure deter-
mination requires less effort than the propagation of multiple filters.

B. Particle Resampling

Particle resampling must take into account belief assigned to both
singleton and nonsingleton propositions. Let rS denote the
percentage of combined belief assigned to single particles, and let
NT denote the total number of particles. Then rS percent of resampled
particles are generated based on the probability density function
defined by the single particles and their assigned belief. Note that this
is a standard method of resampling for particle filters [34]. Let NS
denote the number of particles to be resampled using the singleton
density function (i.e., NS is rS percent of NT ). Summarizing this
resampling step using singleton propositions at time step k, let x�k;i
(i� 1; . . . ; NS) denote the particle set after resampling and x�k;j
(j� 1; . . . ; NT ) the particle set before resampling. Then

x�k;i � x�k;j with probability qj �i� 1; . . . ; NS� �j� 1; . . . ; NT�
(13)

where

qj �
bel�x�k;j�P
N
p�1 bel�x�k;p�

(14)

Fig. 1 Diagram of evidence-theory-based state estimator.
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Note that, in general, unless all belief is assigned only to singleton
propositions (as is the case for particle filters):

XNT
p�1

bel�x�k;p� ≠ 1

It can be shown [35] that the probability density of the new particles
x�k;i tends to the probability density of the previous set of singleton
particles as NT !1. The remainder NT-NS particles are generated
using belief assigned to nonsingleton propositions. Let r1; r2; . . . ; rn
represent the percentages of belief assigned to nonsingleton
propositions p1; p2; . . . ; pn, respectively. For each nonsingleton
proposition pi, ri percent of resampled particles are generated
according to a uniform distribution defined by the bounds of the
nonsingleton set. Therefore,

x�k;i � si�i� 1; . . . ; Ni� (15)

where si is a random variable drawn from the uniform distribution
U�pi� and Ni represents ri percent of NT . To account for the
percentage of belief p� assigned to the uncertainty class, p� percent
of resampled particles (N�) are generated using a uniform
distribution over the entire state space. When the resampling step is
complete,

NT � NS � N� �
Xn
i�1

Ni

total new particles have been generated.
For example, given four particles f0:32; 0:41; 0:45; 0:60g for a

particular state �, suppose belief is distributed according to Table 1.
In this case, 2 particles (50% of the particle set) would be generated
from the PDF defined by the singleton particles and their associated
belief, one particle (25% of the set) would be generated from a
uniform distribution on the interval [0.32, 0.45], and one particle
(25% of the set) would be generated from a uniform distribution on
the interval [0.32, 0.6].

Following particle resampling steps using both singleton and
nonsingleton belief distributions, roughening techniques similar to
those typically employed in particle filters [34] are used to avoid
sample impoverishment. Sample impoverishment occurs when
belief assignments from sensors do not overlap well with the given
set of particles, and results in the collapse of the particle set to only a
few distinct values following resampling. Eventually all particles
will collapse to the samevalue. To avoid this, Gaussian noise is added
to the particle set following the resampling process (called
roughening). The standard deviation of this noise is termed the
roughening coefficient KR. Thus, the particle distribution following
the roughening step is given by

x�k;i � x�k;i � N�0; KR� (16)

The roughening coefficient is defined such that it is proportional to
the maximum distance between particles at the current time step.
This maximum distanceMp is given by

Mp �max
i;j
jx�k;i � x�k;jj (17)

Following standard methods for particle filtering [34], KR is then
computed according to

KR � kRMp=NT (18)

where kR is a tuning parameter specifying the amount of noise added
to each particle. As a final guard against sample impoverishment,Mp

is limited such that the value used in (18) cannot drop below a certain
threshold. Analogous definitions for higher-dimensional state spaces
are provided in [34].

C. Conflict Measures and Sensor Removal

At each time step, the conflict measure in Eq. (11) is computed for
each pair of m sensors. The result is a symmetric m �m matrix of
conflict measures, which is filtered using a moving average. This
filtered set of conflict measures is then analyzed to determine which,
if any, sensors are consistently in disagreement with others about the
likely current state. This is performed be setting thresholds on
acceptable values of the conflict for each sensor pair. If conflict
measures for a certain sensor consistently exceed a given threshold, it
is eliminated from the measurement update process until conflict
measures decrease appropriately. Thus, the sensor diagnostic process
assumes that if a sensor is in conflict with the majority of others, the
sensor is malfunctioning, or at least incapable or producing reliable
information. An analogous procedure could be performed to diag-
nose problems with an entire group of sensors that may be impaired
by computing a mean conflict between sensors of different types.

D. Tractability of the Estimation Problem

Given a particle set of size N, the total number of elements within
the frame of discernment, which includes all singleton propositions
and all nonsingleton propositions, is 2N . When discretizing a state
space with reasonable resolution, 100 or more particles are typically
used. Thus, the estimator proposed here would theoretically have to
consider in excess of 2100 possible propositions. The estimation
problem quickly becomes intractable for any reasonable number of
particles. However, given a certain sensor package, only a very small
number of nonsingleton propositions will be assigned nonzero belief
at any particular time (corresponding to the number of sensors
providing belief distributions to nonsingleton set). For instance, the
vast majority of sensors will assign belief only to nonsingleton
propositions representing a continuous interval of the state space.
Thus, for the estimator proposed here, at any given time step the
states that must be considered are the particle setN plus a handful of
nonsingleton propositions (including the uncertainty proposition).
The computational load will therefore be only marginally greater
than that required for particle filters [21].

IV. Example Roll Estimator Design

An example projectile roll-angle estimator is presented. First,
sensor and dynamic models are described, with particular emphasis
on how belief is distributed over the frame of discernment for each
sensor type. Then example estimation results are presented and
compared with those from an extended Kalman filter (EKF). A final
example explores the case of amalfunctioning sensor, demonstrating
the ability of the evidence-theory-based estimator to recognize and
remove problematic sensors from the estimation process in real time.
Note that a roll estimation example is used here simply to demon-
strate how the evidence-theory-based filter can be implemented and
to show basic performance characteristics. It is expected that the
evidence-theory-based algorithm and the EKFwould yield results of
similar accuracy for nominal cases, and this is verified.

A. Sensor and Dynamic Models

The example estimator discussed here is designed for a mortar
projectile with a diameter of 81 mm and weight, axial inertia, and
transverse inertias given by 48.9 N, 0:00416 N-m2, and
0:0773 N-m2, respectively. A projectile body reference frame B is
fixed to the projectile such that IB is aligned with the axis of

Table 1 Example particle resampling scenario

Proposition Belief

Singleton propositions (total 50% of all belief)

�� 0:32 0.12
�� 0:41 0.15
�� 0:45 0.14
�� 0:60 0.09

Nonsingleton propositions (total 50% of all belief)

�� f0:32; 0:41; 0:45g 0.25
�� f0:32; 0:41; 0:45; 0:60g 0.25

828 ROGERS AND COSTELLO

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

Fe
br

ua
ry

 7
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.5
56

52
 



symmetry, and JB andKB are directed radially outward, as shown in
Fig. 2.

Four types of sensors provide roll feedback to the estimator
presented here:magnetometers, thermopiles, GPS, and solar sensors.
Each of these types of sensors provides feedback in a unique way
with varying levels of resolution, and thus each assigns belief
differently over the set of particles representing possible roll states at
the current time step. Two sensor types, magnetometers and ther-
mopiles, assign belief primarily to singleton propositions, whereas
two other sensors, GPS and solar sensors, assign belief to non-
singleton sets. The projectile is considered to be equipped with two
single-axis magnetometers, one thermopile, four solar sensors, and
one GPS receiver.

Two single-axis magnetometers are assumed to be located on the
body, with their sensitive axes aligned with JB andKB, respectively.
Magnetometer outputs are generated using a simplified model in
which the two magnetometer signals are given by

M�J � Sy ~My � by � nmag (19)

M�K � Sz ~Mz � bz � nmag (20)

where ~My and ~Mz are components of Earth’s magnetic field vector
resolved in the JB and KB directions, respectively; S is the
magnetometer scale factor, b is bias; and nmag is Gaussian white
noise. Since only roll information is desired, outputsM�J andM

�
K can

be reduced to zero-mean sinusoidal signalswith unity amplitude, and
phase information can be extracted to obtain roll-angle feedback.
Thus, at each time step, the signals are first normalized using running
estimates of bias and scale factor for each signal obtained from peak

detection, yielding normalized outputs �M�J and �M�K . Harkins [36] has
shown that these normalized outputs are the sine and cosine,
respectively, of the roll angle offset by a phase angle determined by
the magnetic field vector and projectile Euler angles, given by

�M � tan�1
�

MN sin� � �ME cos� �
MN sin��� cos� � �ME sin��� sin� � �MD cos���

�

(21)

whereMN ,ME, andMD are the north, east, and down components of
the localmagneticfield vector. For a given trajectory, a time history of
�M is generated before flight using trajectory simulation, then
uploaded and stored to the guidance system for use in the estimator.
Thus, the roll angle can be determined from normalized magne-
tometer readings according to

�� sin�1� �M�J� � �M or 180 deg�sin�1� �M�J� � �M (22)

�� cos�1� �M�K� � �M or � cos�1� �M�K� � �M (23)

for the JB andKB magnetometers, respectively. Equations (22) and
(23) show that for a given magnetometer signal, two roll angles are
equally likely.

Magnetometers assign belief to the particle set by assuming sensor
noise isGaussian. Because of the high resolution of this sensor, belief
is only assigned to singleton propositions (i.e., single particles). At a
given time step, belief is assigned by generating Gaussian distri-
butions (with a standard deviation of 2 deg) around the two roll
angles calculated fromEqs. (22) or (23) such that the total belief adds
to 1. If some belief cannot be assigned due to particle set bounds, the

remainder of belief is assigned to the uncertainty class �. Figure 3
shows an example belief assignment for a given time step from the JB
magnetometer. Note that the KB magnetometer produces a similar
belief distribution, differing only due to noise and normalization
errors.

Thermopiles, like magnetometers, produce a sinusoidally varying
signal with roll angle. Rogers et al. [37] have shown that thermopiles
measure the thermal gradient between the sky (which appears cold)
and the ground (which appears warm). This results in sensor outputs
that appear sinusoidal as the projectile rolls with a slightly com-
pressed upper half, as shown in Fig. 4. This compression is more
noticeable for pitch angles closer to zero. By normalizing thermopile
outputs at each time step, roll-angle estimates can be obtained
according to

�� sin�1� �v�� � � or 180 deg�sin�1� �v�� � � (24)

where �v� represents the normalized thermopile output and � is a
phase angle determined by the thermopile offset around the roll axis.
Thus, as with magnetometers, thermopiles assign belief only to
singleton propositions by creating twoGaussian distributions around
the two possible roll angles determined fromEq. (24). In general, one
of these peaks will roughly correspond to one of the peaks from the
magnetometer distributions, and thus roll angle can be uniquely
determined. For the example estimator presented here, one
thermopile is considered to be present on the projectile, with the
center of its field of view aligned with JB. The thermopile model

Fig. 2 Projectile body reference frame.
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Fig. 3 Example magnetometer belief distribution. Note that the
particle set extends from 105 to 140 deg, and the remainder of belief is

assigned to the uncertainty class.
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outlined in [37] is used to generate example sensor outputs for the
cases shown here. This model has been validated against actual flight
data as outlined in the reference.

Roll information for gun-launched projectiles can also be provided
through the use of GPS upfinding techniques [38]. Specially
equipped GPS receivers can monitor signal strength as the projectile
rolls and will provide an output pulse whenever the antenna is
pointed within approximately 10 deg of the KNR unit vector, where
NR denotes the projectile no-roll reference frame. Note that the NR
frame is obtained from the B frame through a transformation of ��
about the IB axis. The GPS upfinder is inherently a low resolution
sensor, as it provides a window of possible roll angles rather than
pointing directly to a single state. Including this information in a
precise manner is difficult in a Kalman filter framework, since a
continuous measurement equation cannot be defined and outputs
simply limit the bounds of the estimate rather than provide direct
feedback. It is assumed in this study that the center of the antenna
points directly upward along the �KB axis. Therefore, in the
evidence-theory-based state estimator, when a pulse is received the
GPS assigns a belief of 1 to the nonsingleton proposition, which
includes all roll-angle states between �10 and 10 deg, and assigns
zero to all other propositions. If no such particles exist in the current
set, or if no pulse is present, then a belief of 1 is assigned to the
uncertainty class, since the sensor can provide no useful information.
Note that assignment of belief to the nonsingleton proposition is not
equivalent to assignment of equal belief to all of the component
singleton propositions (as is done in a particle filter). Belief in the
nonsingleton group of states reflects knowledge that the real state is
somewhere within the bounds of the group, but no information is
available as to which state is the correct one. Equal assignment to
single states implies that the sensor knows that each of the singleton
states is equally likely. The use of these two types of assignments in
the conjunctive combination rule will produce different results.

Solar sensors are another common method of providing roll
orientation [39] information. A pulse is output anytime the vector
from the sun to the sensor lies within the narrow field of view of the
sensor, as shown in Fig. 5. Note that for a pulse to be generated, the
solar vector must intersect the substrate at an angle with magnitude
less than �ij in the IS-JS plane andwithmagnitude less than �ik in the
IS-KS plane. The S frame represents the sensor frame, and KS is
typically alignedwith the roll axis of the body,whereasIS is typically
oriented radially outward from the roll axis. The half angle limit �ij is
drawnvery large in the figure to illustrate sensor operation. In reality,
�ij is typically significantly smaller to provide higher roll-angle
resolution. The output pulse of the sensor, along with knowledge of
the current position of the sun in the sky, allows determination of the
roll angle within 1–2 deg when a pulse is obtained. In the studies
performed here, values of �ij � 1 deg and �ik � 30 deg are used,
and the solar vector is assumed to be completely vertical.

Because they offer an output pulse similar to GPS, solar sensors
distribute belief over the particle set by assigning a belief of 1 to the
nonsingleton proposition defined by the limits of the possible roll
angles given the solar sensor configuration. The width of this
nonsingleton interval is normally about 2 deg (given �ij � 1 deg). If
the particle resolution is high, there may be numerous particles

within this 2 deg interval. If particle resolution is low, only a single
particle may be available within the interval, and belief is thus
assigned to this singleton proposition. In the case where no particles
are within the interval, or no output pulse is received, a belief of 1 is
assigned to the uncertainty proposition and zero to all other
propositions.

The sensor belief models described above are used within the
estimator to assign belief over the particle set at each measurement
update. A dynamic model is also provided to the estimator to
propagate the particle set in between updates. For this simple
estimator, a linear dynamic model is used in which

�̂ k�1 � �̂k � p̂�t (25)

where p̂ is the current roll rate and�t is the estimator time step. Note
that this model neglects nonlinearities in the kinematic equation for
�, which are typically small for projectile motion. Roll rate p̂ is
assumed to be provided by a rate gyro aligned with IB. Noise and
bias are added to gyro outputs which, along with linearization of the
kinematics, introduce error into the dynamic model.

B. Nominal Estimation Results

Example estimation results are presented for an 81 mm mortar
projectile trajectory. The projectile is launched with a quadrant
elevation of 815 mil and a muzzle velocity of 270 m=s. Altitude vs
range and roll-rate time histories are provided in Figs. 6 and 7,
respectively. The sensor suite used for this case are two single-axis
magnetometers aligned with the JB and KB axes, respectively, a

γijγik
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s

Fig. 5 Solar sensor diagram. Vector s represents the incoming solar

vector.
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Fig. 6 Range vs altitude for example trajectory.
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Fig. 7 Roll-rate time history for example trajectory.
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single thermopile with field of view aligned with JB, four solar
sensors with fields of view centered along JB,KB, �JB, and �KB,
respectively, and a GPS upfinding system producing a pulse when �
is between�10 and 10 deg. Table 2 lists error parameters associated
with each sensor and other configuration details. An extended
Kalman filter was constructed using the sensor and dynamic models
described above for performance comparison purposes. GPS
upfinding and solar sensor feedback were input into the EKF by
selecting a single roll angle to use as the measurement each time a
pulse is received (for instance, each time a GPS upfinding pulse is
received, a measurement of �� 0 is used).

Figures 8 and 9 show estimation results for the evidence-theory-
based estimator and the extended Kalman filter, respectively. Note
that in both cases, reasonable estimation performance is verified. The
rms error for the EKF case is 1.3 deg, whereas rms error for the
evidence theory filter is 1.84 deg. It is expected that for this filtering
problem involving nearly linear dynamics, Kalman filter results will
be highly accurate. The evidence theory filter, however, is not an
optimal estimator and thus results are not quite as accurate as those
generated from the EKF. One factor contributing to estimation error
is that Dempster’s rule is not robust to sensor belief assignments
which, although in general agreement about the approximate
location of the state, do not agree closely due to sensor noise or
measurement model error. This is analogous to the well-known
Zadeh’s paradox [40] in which Dempster–Shafer theory provides an
incorrect conclusion based on conflicting evidence. Futurework will
consider the use of more robust extensions of the conjunctive rule to
mitigate this problem. Figure 10 shows filtered conflict measures for
this nominal case. Note that although relatively constant filtered
conflict measures are present throughout the trajectory, higher
conflict is present during the middle portion of the trajectory when
the thermopile signal has more compressed peaks, thus deviating
more from the sinusoidal sensor model and causing more
disagreement with magnetometer feedback.

Like particle filters, the evidence-theory-based filter suffers from
significant computational burden in comparison to Kalman filter
algorithms, especially as the particle set increases in size. This can be
viewed as the price thatmust be paid for removing the linear dynamic
and Gaussian error assumptions inherent in the Kalman filter. For
particle filters, it can be shown that larger numbers of particles will
generally yield more accurate state estimates. Experiments with the
roll estimator developed here actually showed that in cases where
sensor errors are high, large particle sets spread out over a sizeable
interval of the state space were actually detrimental to filter per-
formance. This is because noisy sensors are able to assign belief to
states far from the actual value, instead of being restricted by the
particle set bounds and simply assigning belief to the uncertainty
proposition. Therefore, the roughening coefficient and particle
number must be adjusted appropriately to attempt to “reject” bad
feedback from noisy sensors. Future versions of the proposed
estimator using more robust combination rules will likely mitigate
this issue.

C. Failed-Sensor Case

A study demonstrates estimator performance in the presence of a
malfunctioning sensor. To highlight the effect of the problematic
sensor, the sensor package is reduced to the two magnetometers and
the single thermopile in the configuration described in Sec. IV.B.
Furthermore, all sensor errors except for the gyro bias and noise are
removed. At 20 s into the trajectory, the magnetometer aligned with
KB malfunctions and produces uniformly random outputs along the
interval [�1, 1]. At 30 s, the sensor regains accuracy. Although this is
perhaps not a common failure mode exhibited by magnetometers, it

Table 2 Example estimation case error and configuration parameters

Parameter Value

Gyro noise standard dev 2 rad=s
Gyro bias 1 rad=s
Thermopile signal noise standard dev 1 bit (before normalization)
Magnetometer signal noise standard dev 0.015 normalized units
Number of particles 100
Conflict measure filter order 50
Filter measurement update rate 400 Hz
Magnetic field north, east, down components f0:96; 0:12;�0:24g
Roughening coefficient kR 20 deg
Initial states (evidence theory filter and EKF) 0 deg
EKF initial state error covariance 1 rad2
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Fig. 8 Roll-angle estimation error, evidence theory filter.
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Fig. 9 Roll-angle estimation error, extended Kalman filter.
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serves to demonstrate how the sensor diagnostic process is per-
formed. Three conflict measures are generated, corresponding to
each sensor pair. These conflict measures are monitored, and if more
than one exceeds predetermined thresholds, the common sensor to
those conflict measures is determined to be malfunctioning and is
removed from the measurement update process.

Several cases are simulated to demonstrate the benefit of this
sensor diagnostic process. The first is a nominal estimation case in
which no sensor failures occur, to be used for comparison purposes.
In the second case (termed sensor failure), the sensor fails but is not
removed from the estimator. The third case (termed sensor removal)
demonstrates performance when conflict measures are monitored
and malfunctioning sensors are removed. A fourth case shows
estimation results for themalfunctioning sensor case using a standard
extended Kalman filter algorithm, also for comparison. A final case
shows example results for the failed-sensor case using an EKF that
performs outlier rejection, in which measurement innovations
outside a 3� deviation from the estimated covariance are excluded
from the measurement update [29].

Figure 11 shows the five estimation error time histories. Note that
errors are generally very low for all five cases before the sensor
malfunction. During the period of sensor malfunction, the sensor-
failure case and the standard Kalman filter case continuously exhibit
large errors. Note that when the problematic sensor is not removed,
the evidence-theory-based estimator shows occasional large error
spikes due to the sensitivity of the conjunctive rule to conflicting
belief assignments (see discussion in Sec. IV.B). In the evidence
theory sensor-removal case, the estimator recognizes high conflict
measures and eliminates theKB-axis magnetometer from the update
process. This results in significantly reduced error during the period
in which the sensor malfunctions, resulting in an overall rms
estimation error of 1.52 deg. Similar error reduction is demonstrated
using the EKFwith outlier rejection, although rms errors were higher
at 1.62 deg. This slight increase in errors is attributed to the fact that
the filter still incorporates erroneousmeasurements if they fall within
the 3� boundary and points to the fact that successful outlier rejection
inherently requires accurate filter tuning and covariance tracking.
Figure 12 shows a time history of all three conflict measures
computed for the evidence-theory-based sensor-removal case. Note
that a conflict threshold of 0.4 was set to trigger sensor removal. As

shown in Fig. 12, sensor conflict is generally low during periods
when all sensors are working. This means that belief assignments
from all three sensors are generally close together, which would be
expected. When the KB magnetometer malfunctions, the filtered
conflict measures involving theKBmagnetometer quickly rise above
the threshold. Noticing that the two high conflict measures both
involve theKBmagnetometer, the estimator determines this sensor is
malfunctioning and removes it from the update process. After 30 s,
the sensor returns online, conflict measures reduce to their normal
level, and the sensor is once again included in measurement updates.

This simple example demonstrates how conflict measures can be
used to isolate problematic sensors and exclude them from the esti-
mation algorithm. Depending on sensor reliability and the number of
sensors involved, this diagnostic process can be a powerful tool that
enables significantly increased accuracy. For instance, thermopile
disturbances due to weather phenomena typically show up as
increased noise in sensor outputs, and this process can be used to
mitigate the effect of such disturbances on overall estimation
accuracy.

V. Conclusions

The design of a novel evidence-theory-based state estimation
algorithm has been presented. The use of evidence theory allows
processing of all information pertinent to the estimation problem and
provides ameans to dealwith uncertainty in a rigorousway.Unlike in
Bayesian estimation, uncertainty in belief assignment is acknowl-
edged and sensors are not forced to distribute belief according to
probability densities. At the same time, in contrast to methods
derived from Kalman filtering, the estimator can handle fully non-
linear dynamicmodels and does notmake anyassumptions regarding
sensor error statistics. Furthermore, sensor belief assignments can be
contrasted with one another, and problematic sensors can be
identified. Removal of these sensors from the estimator requires
minimal reconfiguration. The paper begins with an overview of
evidence theory, and the proposed estimator design is discussed. Key
estimator components, such as resampling, conflict measurements,
and sensor belief assignments are described in detail. Results from an
example roll estimator demonstrate how the filter is constructed and
basic performance characteristics. An example using a faulty mag-
netometer sensor demonstrates how belief function conflict metrics
can be used to systematically identify and remove problematic
sensors from the filtering process.
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