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Abstract: There are numerous ways to estimate the trajectory and subsequent impact point of a projectile. Some complex methods are
highly accurate and require a lot of input data while others are fairly trivial and less accurate but require minimal input data. Projectile
impact point predictors (IPPs) have three primary error sources: model error, parameter error, and initial state error. While model error
typically shrinks as model complexity increases, parameter and initial state errors grow with increasing model complexity. Since all input
data feeding an IPP are uncertain to some level, the ideal IPP for an overall situation is not clear cut by any means. This paper examines
several different projectile IPPs that span the range of complex nonlinear rigid projectile models to simple vacuum point mass models with
the intent to better understand relative merits of each algorithm in relation to the other algorithms and as a function of parameter
uncertainty and initial state error. Monte Carlo simulation is employed to compute impact point statistics as a function of the range to the
target for an indirect fire 155-mm spin stabilized round. For this specific scenario, results indicated neglecting physical phenomena in the
formulation of the equations of motion can degrade impact point prediction, especially early in the flight. Adding uncertainty to the
parameters and states induces impact point errors that dominate model error contributions. Impact point prediction errors scaled linearly
with parameter and state errors. All IPPs investigated converged to the actual impact point as the time at which the estimate took place

approached the time of impact.
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Introduction

One typical characteristic of smart projectiles is relatively low
control authority. For example, it is common for control actuators
on a smart projectile to modify the impact point of an indirect fire
shot by 200 m at a range of 20,000 m. For this reason, control of
smart projectiles is sometimes called “ballistic nudging.” Since
control authority for smart projectiles is usually small, flight con-
trol systems must efficiently move the bullet in-flight to its in-
tended impact point. To this end, projectile impact point
predictors (IPPs) are often embedded inside the flight control sys-
tem of smart weapons to project the effect of control action on the
impact point with the end goal of minimizing control effort (Bur-
chett and Costello 2002).

At the core of any projectile trajectory calculator is the solu-
tion of a set of dynamic equations of motion, either analytic or
numeric. These dynamic models are driven by a set of input pa-
rameters such as mass properties and aerodynamic coefficients, as
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well as the initial state of the projectile which depending on the
dynamic model can include initial position, orientation, and ve-
locity. Because model parameters and the initial state of the pro-
jectile are uncertain to some degree, each IPP will have three
major sources of error: model error, parameter error, and initial
state error. Model error arises from the fact that no trajectory
model can perfectly predict physical reality. Of course, some tra-
jectory models are better than others in this sense. Parameter er-
rors stem from the fact there will always be a mismatch with
parameter values used in the trajectory calculator and the physical
system. Initial state errors arise from the fact that the trajectory
calculator requires the initial state of the projectile to propagate
the solution to the impact area. The initial state is measured by
sensors or estimated through an observer leading to errors be-
tween the trajectory calculator and the physical projectile. An
ideal projectile IPP is sufficiently accurate for its intended pur-
pose, computationally efficient so impact point estimates can be
performed in real time on a microprocessor and can be driven by
a minimal data set.

Many different trajectory calculators are available with vary-
ing levels of fidelity and data requirements. These methods
loosely fall into three categories: rigid body, modified point mass
(MPM), and point mass methods. Rigid body methods assume
that the projectile is a rigid body that possesses three position and
three orientation degrees of freedom. These models require mass
and inertia properties, extensive aerodynamic coefficient data, and
12 initial state conditions. As the name suggests, point mass
methods assume that the projectile is a point mass that possesses
three position degrees of freedom. These models require mass,
aerodynamic drag data, and six initial state conditions. The MPM
model assumes that the projectile is a point mass, but the roll
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Fig. 1. Illustration of coordinate system and Euler angles

dynamic equation is appended to the model along with side force
to better replicate cross range of spin stabilized projectiles. It has
data requirements between the rigid body and point mass models.
While rigid body projectile models are considered the most accu-
rate with the least model error, they generally also require the
most input data and as such have the most parameter and initial
state error. At the other end of the spectrum is the point mass
model without aerodynamics. This model is generally considered
the least accurate model with the largest associated model error.
However, it also requires the least number of input parameters
leading to the lowest parameter and initial state error. Thus, de-
pending on knowledge of an optimal projectile IPP must balance
model error with parameter and initial state error.

This paper examines the merits of different smart weapon IPPs
and creates a methodology to identify an overall ideal smart
weapon IPP for a given application. The effects of all major
sources of parametric and initial state uncertainty are included in
the analysis. IPP accuracy is assessed from a statistical perspec-
tive using the extensive Monte Carlo simulation using all candi-
date IPPs. Results are presented in terms of mean and standard
deviation of the impact point prediction and parametric trade
studies are reported that vary the range to the target, the uncer-
tainty of mass properties, the uncertainty of aerodynamic proper-
ties, and the level of measurement errors.

IPPs

Seven different IPPs are considered in this effort. Equations of
motion, required parameters (such as mass), and initial states
(such as muzzle velocity) make up an IPP. The equations of mo-
tion and associated parameters and input states will be briefly
presented for each IPP (McCoy 1999). A North-East-Down coor-
dinate system with the origin at the launch point was employed
for each IPP. Fig. 1 illustrates the projectile with center of gravity
(CG) in this coordinate system along with orientations of the
Euler angles (&b,60,1). All calculations were performed with a
symmetric projectile in a standard atmosphere with no atmo-
spheric winds.

The most complex representation of projectile motion is the
six degrees-of-freedom (6DOF) model. The 6DOF model in the
no-roll reference frame is given in Egs. (1)—(4). The dot notation
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derivative in time (). Twelve states
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set of coupled nonlinear ordinary differential equations requires
initial states, acceleration of gravity, atmospheric density and
sound speed, mass, inertia tensor (axial and transverse inertia for
symmetric projectiles), location of CG, diameter, and tables of
aerodynamic coefficients as a function of the Mach number to
calculate projectile dynamics
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The linear theory of projectile motion is a closed-form solution
that is a simplification of the 6DOF model. Linear theory provides
reasonably accurate representations of flat fire and short time of
flight trajectories. Modified linear theory (MLT) was developed to
accommodate higher quadrant elevation and longer time of flight
trajectories (Hainz and Costello 2005). The equations of motion
for MLT are given in Egs. (5)—(16). The prime notation denotes a
derivative in space (s). MLT needs 12 initial states
x",y",z",0",0" W', V', o' W ,p',q 7). Parameters required by
MLT include acceleration of gravity, atmospheric density and
sound speed, mass, axial inertia, transverse inertia, location of
CG, diameter, and almost the same set of aerodynamic coeffi-
cients used in the 6DOF
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The MPM model was developed to rapidly predict the fire control
solution for artillery systems (Lieske and Reiter 1966; Cooper et
al. 1997). Artillery drifts in the cross-range direction due to yaw
of repose. Yaw of repose is a complex phenomenon produced by
the interaction of spin, gravity, and aerodynamics. The MPM
model, presented in Egs. (17)—(20), includes terms for the rota-
tional degree of freedom about the spin axis and yaw of repose.
Initial states necessary for MPM calculations are the position,
velocity, and spin rate (x,y,z,%,y,z,$). The acceleration of grav-
ity, atmospheric density and sound speed, mass, axial inertia, lo-
cation of CG, diameter, aerodynamic coefficients of axial force,
normal force, Magnus moment, and roll damping moment are
shown. Here
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The equations of motion shown in Egs. (21)—(23) apply to a fam-
ily of point mass IPPs. Initial states for all point mass IPPs are
position and velocity (x,y,z,X,y,Z). The full point mass (FPM)
IPP updates the atmospheric density and zero-yaw axial force
coefficient as the projectile flies. The simple point mass (SPM)
IPP uses the density and zero-yaw axial force coefficient at

launch. Besides zero-yaw axial force coefficient, both FPM and
SPM require acceleration of gravity, atmospheric density and
sound speed, mass, and diameter. The vacuum point mass (VPM)
does not include aerodynamics (Cx,=0) and therefore only treats
gravitational forces acting on the projectile. Here
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The hybrid point mass (HPM) IPP is so called because an updated
drag estimate is used in a vacuum-type equation of motion. The
drag per unit mass in three directions is assessed by Egs.
(24)—(26). The acceleration in the z-direction is then placed in Eq.
(27) to estimate the time-of-flight remaining (z,,). Egs. (27) and
(28) are used to calculate the impact location in x and y for this
to- HPM requires the same initial states (x,y,z,%,y,7) and pa-
rameters (g,p,c,m,D,Cy,) as FPM and SPM. Here
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Table 1 summarizes the necessary states and parameters for each
of the seven IPPs investigated in this effort. Closed-form solu-
tions exist for the MLT, FPM, SPM, HPM, and VPM IPPs. A high
speed of calculation is associated with a closed-form solution.
The speed of calculation is important when implementing a given
IPP real time on a digital signal processor in the guidance and
control of a precision munition.

Results

A 155-mm artillery projectile was selected as the test bed. Physi-
cal characteristics are supplied in Table 2. Aerodynamics con-
sisted of coefficients of axial force, normal force, Magnus force,
pitching moment, pitch damping moment, roll damping moment,
and Magnus moment. These physical properties and aerodynam-
ics are typical of a spin-stabilized indirect fire round.

Baseline trajectories were generated from the 6DOF model.
The projectile emerged from the muzzle with a velocity of 656.8
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Table 1. Summary of IPP Required States and Parameters

IPP States Parameters

6DOF x,y,z,d),e,lb,ﬁ,ﬁ,v'v",ﬁﬁ,? g,p»Csm,D,Ixx,Iyy,CG»CXO,szacNA,CYPA,CMA,CMQ7CNPA,CDD,CLP
MLT X'y e e L VLo WL LG T 8,p.c,m,D Iyy,lyy,CG,Cxo,Cnygs Cpra, Crig> Cnpas Cpps Crp
MPM x,y,z,x,y,z‘,,d') g,p,¢,m,D,Ixx,CG,Cxy,Cxy, Cyp, Cypa, Crp

FPM X,Y52,X,V,2 g.p,c,m,D,Cxq

SPM X,¥,2,%,,2 g.p,c,m,D,Cx

HPM X,Y,2,X,Y,2 8:p,c,m,D,Cx

VPM X,Y,2,X,Y,2 g

m/s and spin rate of 1332.0 rad/s. The quadrant elevation was 20°
and launch disturbances (0,w,g,7) were set to zero.

The baseline flight dynamics at 20° quadrant elevation are
provided in Fig. 2. The projectile flew almost 15 km down range
and reached a peak altitude over 1.5 km. The effect of yaw of
repose to induce a yaw angle is seen in the projectile drifting to
the right (when viewed from behind) by over 100 m in Fig. 2(a).
The flight spanned supersonic to the transonic Mach numbers.
The angle of attack behavior illustrates the yaw of repose (nega-
tive B) and effect of nonlinear Magnus moment. The coning mo-
tion of approximately 3° total angle of attack is a limit cycle that
occurs for about the final 20% of the flight.

Table 2. Projectile Physical Properties

M
(kg)
46.72
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0.5631

IYY
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IXX
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The 6DOF model baseline flight dynamics served as ground
truth by providing the states and the actual impact location from
which all IPPs were evaluated. At chosen instants along the tra-
jectory, projectile states from the baseline 6DOFsimulation were
used to obtain initial states in the IPP algorithms.

To understand the inherent ability of a given IPP to represent
physical reality, each IPP algorithm was performed with perfect
initial state and parameter information. Thus, the effect of dy-
namic model errors was isolated. A normalized time of flight (7™)
was obtained by dividing the time of flight by the time of impact.
This normalized time was chopped into 40 equal divisions and the
baseline 6DOF states and parameters were used in each IPP to
predict the impact point. At each time at which the impact point
was predicted, the down-range (jy), cross-range (Wy), and radial
(wg) distances from the baseline impact location were captured.

These data (py, Ly, Lg) are shown for a 20° quadrant elevation
in Fig. 3 for the seven IPPs. The 6DOF IPP predicts a perfect
impact point because the truth model has the same 6DOF equa-
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Fig. 2. Flight dynamics of the artillery projectile at 20° quadrant elevation: (a) trajectory; (b) Mach number history; and (c) angle of attack

behavior
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Fig. 3. (Color) Mean of impact point prediction for 20° quadrant elevation and perfect parameters and initial states: (a) down-range direction;

(b) cross-range direction; and (c) radial direction

tions of motion and the initial states and parameters have no
associated errors. Errors evidenced the results in Fig. 3 for all
IPPs other than the 6DOF are solely due to modeling deficiencies
(assuming the 6DOF model as truth).

Down-range impact is underpredicted by the MLT, FPM, and
SPM IPPs by about 25 m at 7"=0 and improves as 7" — 1. Range
is underpredicted by the FPM and SPM IPPs even though yaw
drag is not included in the point mass equations of motion. The
updating of atmospheric density and zero-yaw axial force for the
FPM IPP does not appreciably increase down-range impact pre-
diction over the SPM IPP. MPM performance decreases by about
20 m from launch (7%=0) to apogee (approximately 7°=0.5);
possibly due to the yaw of repose not being appropriately ac-
counted for in the MPM model. The down-range model errors of
the MLT, MPM, FPM, and SPM IPPs for this case have a similar
order of magnitude throughout the flight. Down-range impact is
underestimated by more than 150 m for 7% < 0.6 for the HPM IPP
because 7, is underpredicted due to an overpredicted deceleration
in the z-direction. Neglecting drag is shown in the VPM results to
overestimate the down-range impact point by more than 200 m
for T°<0.6. Down-range performance of all IPPs improves as
T"—1.

The cross-range results of Fig. 3(b) are quickly broken into
IPPs that account for projectile drift and those that do not. The
6DOF, MLT, and MPM have less than 10 m of cross-range error
throughout the flight due to including the effect of yaw of repose.
Cross range is predicted to be less than 1 m for the entire flight by
the MPM IPP. Past 7°=0.8, the MLT cross-range predictions
jump around by a few meters. This is likely due to the action of
the limit cycle seen for the final 20% of the flight in Fig. 2(c). The
fully nonlinear behavior of the Magnus moment in the 6DOF is
not completely captured in the MLT equations of motion. The
point mass derivatives (FPM, SPM, HPM, and VPM) do not in-

clude drift due to yaw of repose and correspondingly suffer in
cross-range error to within less than about 20 m of each other. As
T"— 1, the point mass IPPs converge to the correct cross-range
location due to a shorter trajectory prediction containing less drift
effect.

The radial impact error is a simple root sum square of the
results in Figs. 3(a and b). MLT improves in radial impact pre-
diction error from about 25 m at 7°=0 to less than 1 m at 7"=1.
The coning motion near the end of the flight, however, increases
the MLT estimate above all other IPPs studied at some point. The
radial impact estimation for MPM increases to about 20 m
(mainly in the down-range direction) near apogee. Radials errors
for FPM and SPM IPPs vary from over 120 m at 7°=0 to less
than 10 m at 7°=0.8 due to improvement in the cross-range pre-
diction. While both the HPM and VPM IPPs have over 150 m of
radial error at 7°=0.6, the results asymptote to less than 5 m of
radial error by 7°=0.9. A steeper quadrant elevation trajectory
was also examined. The baseline 6DOF was exercised at 45°
quadrant elevation with a muzzle velocity of 656.8 m/s and
muzzle spin rate of 1332.0 rad/s. Launch disturbances (0,w,§,7)
were again zero.

The flight dynamics at 45° quadrant elevation are shown in
Fig. 4. The projectile flew over 17 km down-range, climbed to
almost 6 km in altitude, and drifted in the cross-range direction by
over 400 m. This flight also spanned supersonic to transonic
Mach numbers. A larger yaw of repose and a more active limit
cycle are seen in Fig. 4(c). For this larger quadrant elevation
flight, the coning motion of approximately 3° total angle of attack
occurs for about the final 50% of the flight.

The IPP algorithms were performed for the 45° flight in a
manner similar to the 20° flight. The results of the impact point
prediction errors in the down-range, cross-range, and radial direc-

JOURNAL OF AEROSPACE ENGINEERING © ASCE / JANUARY 2011 /5

Downloaded 21 Aug 2011 to 130.207.50.192. Redistribution subject to ASCE license or copyright. Visihttp://www.ascelibrary.org



L . .
0 5000 10000 15000

X (m)
6000
. 40001 -
E
N
T 2000
o ‘ ‘
o 5000 10000 15000

Mach

0 10 20 30 20 50 60 70 -4 -3 -2 -1 o
Time (sec) /3 (deg)

(b) (©

Fig. 4. Flight dynamics of the artillery projectile at 45° quadrant elevation: (a) trajectory; (b) Mach number history; and (c) angle of attack
behavior

©

Fig. 5. (Color) Mean of impact point prediction for 45° quadrant elevation and perfect parameters and initial states: (a) down-range direction;
(b) cross-range direction; and (c) radial direction
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tions as a function of normalized time of flight are given in Fig. 5.
Again, the 6DOF model has zero model errors as seen in Fig. 5

MLT predicts down-range impact to within 10 m throughout
the flight as shown in Fig. 5(a). Down-range impact is overpre-
dicted by MPM by about 100 m from 7°=0 to about 7"=0.3.
Overestimation of down-range impact suggests a source term in
the MPM equations of motion. It may be possible to account for
this overprediction in down range by some scaling of the axial
force aerodynamic coefficient. Over the entire flight, the FPM
predicts down-range impact to within 10 m. The SPM initially
underpredicts down-range impact by about 50 m; however, by
about 7°=0.3 the error is less than 10 m. It is possible that the
projectile has crossed some critical altitude or Mach regime that
improves the SPM estimate. Down-range estimates from HPM
(underprediction) and VPM (overprediction) are qualitatively
similar to the 20° case. In general, for all IPPs throughout the
entire flight, the down-range impact predictions defy general
trends. All IPP results are nonsmooth for 7°>0.5, implying that
the limit cycle negatively influences each IPP.

Fig. 5(b) presents cross-range prediction errors for the 45°
quadrant elevation and no parameter or state errors. Similarly to
the 20° results, the IPP algorithms are grouped between equations
of motion that address drift and those that do not. The MPM
cross-range estimate is within about 5 m for the whole flight.
MLT estimates of cross-range impact monotonically decrease
from about 85 m at launch to less than 10 m at 7°=0.5 before the
limit cycle produces the erratic results seen for 7°>0.5. The
FPM, SPM, HPM, and VPM have about 450 m of cross-range
error and decrease to within 5 m by 7°=0.9.

Radial impact errors in Fig. 5(c) show that for 7°<<0.5 the
order of IPP preference based solely on model errors for this case
would be (from first to last) 6DOF, MLT, MPM, FPM, SPM,
HPM, then VPM. Coning motion evident in the angle of attack of
Fig. 4(c) for "> 0.5, however, complicates this picture. The limit
cycle clearly degrades MLT performance in Fig. 5(c) for T°
>(.5; for most instances MLT features the highest radial impact
prediction error. Irregular radial prediction curves for MPM,
FPM, SPM, and HPM for 7% > 0.5 indicate that the coning motion
induces erroneous impact point predictions in these IPPs as well.
These IPPs are less dependent on the angular motion, however,
due to simpler equations of motion.

In reality, the state and parameters cannot be known exactly.
State errors result from measurement and subsequent processing
in the state estimation process. The magnitude of state errors de-
pends on the sensor type and processing technique used for a
specific application. One standard deviation of initial state errors
used in this effort is provided in Table 3. Bias errors are constant
for a given flight and random errors occur whenever a new state
estimate is obtained during the flight. These nominal values were
also multiplied by a factor of 2 to identify the dependence of each
IPP on initial state error magnitude.

Uncertainty was also placed on the projectile parameters. Error
in projectile parameters accounts for measurement error and
manufacturing tolerances. For example, aerodynamic coefficients
can only be inferred from spark range testing to a certain degree
of accuracy. Uncertainty also accompanies measurement of physi-
cal parameters such as mass and inertia. Furthermore, measure-
ment sample size constraints may prevent a fully representative
characterization of manufacturing variability. Test data resident at
the Army Research Laboratory were used to determine the mag-
nitude of projectile parameter errors. These distributions, given as
one standard deviation in Table 4, were applied as a bias error in
the IPP assessments.

Table 3. Nominal Initial State Errors (1-0)

State Bias Random
Down-range (X) inertial position (m) 1.0 1.0
Cross-range (Y) inertial position (m) 1.0 1.0
Altitude (Z) inertial position (m) 1.0 1.0
Pitch inertial orientation (deg) 1.0 1.0
Yaw inertial orientation (deg) 1.0 1.0
Roll inertial orientation (deg) 1.0 1.0
Body X velocity (m/s) 0.1 0.1
Body Y velocity (m/s) 0.1 0.1
Body Z velocity (m/s) 0.1 0.1
Body X angular rate (deg/s) 1.0 1.0
Body Y angular rate (deg/s) 1.0 1.0
Body Z angular rate (deg/s) 1.0 1.0

The Monte Carlo evaluation simulated 1,000 shots. All errors
(states and parameters) were assumed normally distributed. The
states and parameters from the baseline 6DOF were corrupted
with bias and random errors before running the IPP algorithms.
Bias errors were held constant for a given shot and random errors
were reevaluated at each point along the trajectory where the IPP
algorithms were exercised. The errors were used similarly for
each IPP to ensure consistency. The impact point predictions from
each IPP were used to calculate the mean and standard deviation
of the down-range, cross-range, and radial direction difference
from the nominal impact point. The mean impact point prediction
with nominal parameter and initial state errors yields the overall
accuracy of the IPP while the standard deviation of the impact
point prediction illustrates the variability in IPP accuracy.

The mean impact point prediction for each IPP with a 45°
quadrant elevation is presented in Fig. 6. The 6DOF, MLT, and
FPM IPPs exhibit similar down-range performance for the nomi-
nal parameter and state errors. These three IPPs overpredict
down-range impact by about 100 m at 7°=0 and improve to less
than 10-m error past 7°=0.6. SPM predicts shorter range than the
6DOF, MLT, and FPM until about 7°=0.3, where the results be-
come similar to these three IPPs. Down-range impact is overesti-
mated by MPM by about 200 m at 7°=0 and does not get within
10 m until about 7"=0.7. The HPM IPP underpredicts range be-
fore closing to within 10 m around 7°=0.8. As expected, the
VPM overpredicts range due to neglecting aerodynamics. The
magnitude of the mean down-range impact for all IPPs agrees to

Table 4. Parameter Errors (1-0)

Projectile parameter Errors
Mass (kg) 0.1451
Diameter (m) 0.0001807
Axial inertia (kg-m?) 0.0005870
Transverse inertia (kg-m?) 0.01975
CG location (m) 0.001288
Axial force (%) 1

Normal force (%) 5

Magnus force (%) 25

Roll damping moment (%) 5

Pitching moment (%) 2

Pitch damping moment (%) 15

Magnus moment (%) 15
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Fig. 6. (Color) Mean of impact point prediction for 45° quadrant elevation and nominal parameter and initial state errors: (a) down-range

direction; (b) cross-range direction; and (c) radial direction

within the statistical uncertainty with the model only results pre-
sented in Fig. 5, with the exception of a general overprediction for
T°<0.2.

The mean of cross-range predictions for the model only [Fig.
5(b)] and the nominal parameter and state error [Fig. 6(b)] cases
is also similar. Results are separated into IPPs that account for
drift (6DOF, MLT, and MPM) and those that do not (FPM, SPM,
HPM, and VPM). There is about 100 m of scatter in the data for
T"<0.2. All IPPs are within 10 m by 7"=0.8 with the exception
of the MLT which exhibits about 20-30 m of spread.

The data shown in Fig. 6(c) are not simply the root sum square
of the results in Figs. 6(a and b). Fig. 6(c) is the mean of the root
sum square of the down-range and cross-range impact point for
an individual Monte Carlo trial. The mean radial impact predic-
tion error is about 400 m for the 6DOF and MLT IPPs at 7°=0.
The 6DOF and MLT radial prediction errors decrease to about
100 m at 7°=0.8. The MPM, FPM, SPM, HPM, and VPM IPPs
have higher radial prediction errors and each gradually converges
to the result for the 6DOF as time increases (MPM at T"=0.5,
FPM and SPM at T°=0.6, HPM at T°=0.65, and VPM at 0.85).
The MLT estimates remain about 5-10 m larger than all other
IPPs for 0.88 <T7%<0.98. Comparing Fig. 5(c) with Fig. 6(c) in-
dicates that the impact point errors induced by the propagation of
erroneous parameters and states through the IPP algorithms are
larger than the model only errors for this set of parameter and
state errors.

The standard deviation of the impact point prediction for each
IPP is shown in Fig. 7 for the nominal parameter and initial state
errors. The magnitude of the standard deviation in the down-range
direction is similar for all IPPs. A humped shape is evident in Fig.
7(a), possibly corresponding to apogee of the baseline trajectory.
The down-range standard deviation decreases to about 50 m at
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T"=0.9. The standard deviation in the cross-range direction for all
IPPs is larger than the down-range direction for 7%<<(.5. Past
T°=0.5, the magnitude of the cross-range standard deviation is
similar for all IPPs and reduces to about 30 m at 7°=0.9. Radial
standard deviations in Fig. 7(c) range from about 350 m (FPM
and SPM) to 100 m (VPM) at T°=0. Results generally reduce as
T" increases and suggest a radial standard deviation of approxi-
mately 30 m for all IPPs at 7°=0.9.

The mean of the impact point prediction for each IPP is shown
in Fig. 8 for the twice nominal parameter and initial state error
level. Down-range and cross-range mean impact prediction error
magnitude agrees with those for the nominal parameter and state
errors shown in Figs. 6(a and b). The only exception to this find-
ing is for mean down-range predictions for 7" <0.5. The nominal
error level overpredicts while the twice nominal results suggest a
general underprediction. Qualitative agreement is also apparent in
mean radial prediction errors between nominal error levels [Fig.
6(c)] and twice nominal error levels [Fig. 8(a)]. Comparing the
magnitudes of these results indicates that the mean radial impact
error scales linearly with the parameter and state error. For ex-
ample, at 7°=0.8 all IPPs show a radial impact error of about 100
m for the nominal errors and about 200 m for the twice nominal
errors.

The standard deviation of the impact point prediction for each
IPP is shown in Fig. 9 for the twice nominal parameter and initial
state errors. The trends in the curves in Fig. 9 match those for the
nominal error level in Fig. 7. Similar to the finding for the rela-
tionship between means for the nominal and twice nominal error
level, the standard deviations seem to scale linearly with the input
error levels. The standard deviation of the radial error at 0.9 is
about 30 m for the nominal errors and about 60 m for the twice
nominal error level shown in Fig. 9(c).
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Conclusions

IPPs are used in the guidance and control of gun launched smart
munitions. The optimal IPP for a given application or family of
systems is currently unknown. Seven IPPs were developed in this
effort. These IPPs were applied to a 20° and 45° quadrant eleva-
tion flight of a 155-mm artillery projectile.

The investigation of model error illustrated that neglecting
critical physics in the equations of motion can result in poor im-
pact point prediction. The 6DOF, as the truth model, was assumed
to have no model errors. MLT was shown to have low model error
(<20 m) for most of the flight, except for times during which a
limit cycle is active. Cross-range predictions of the MPM were
highly accurate (<5 m), but down-range impact was generally
overpredicted by the MPM. This suggests some scaling of the
axial force aerodynamic coefficient to resolve a potential source
term in the MPM equations of motion. There was little difference
between the FPM and SPM IPPs, indicating that updating the
atmospheric density and axial force aerodynamic coefficient was
not of significant value in this specific scenario. FPM and SPM
featured good down-range performance (usually within 20 m)
balanced by poor cross-range impact prediction since yaw of re-
pose is not included in the dynamic model. The HPM and VPM
IPPs also neglect yaw of repose and consequently suffer in cross-
range performance. Down-range impact is underpredicted by the
HPM and overpredicted by the VPM IPPs. All IPPs converge to
the true impact point as the time of estimation approaches the
time of impact. The coning motion, due to a nonlinear Magnus
moment, adversely affects all IPPs and the MLT appears the most
sensitive.

In practice, state estimation, physical properties, and aerody-
namics possess some uncertainty. These effects were included
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through a parameterization. A limited set of Monte Carlo trials
were conducted to assess IPP performance with state and param-
eter errors. The down-range and cross-range impact trends for the
state and parameter error cases were similar to the model only
case for all IPPs. The magnitudes of the radial impact errors were
often higher by one order of magnitude or more for the state and
parameter error cases than the model only case. This indicates
that propagation of incorrect states and parameters at these levels
through the IPP algorithms dominates the model errors. The im-
pact point errors scale linearly with the state and parameter errors.
For this reason, global positioning system or inertial measurement
unit errors or uncertainty in the aerodynamics or physical proper-
ties directly relate to the IPP performance. The impact point per-
formance with the state and parameter errors was insensitive to
IPP type for 7°>0.8. The control authority available and time of
flight at which course corrections take place may determine the
optimal IPP for a given application. For example, if much control
authority was available late in flight (7°=0.9) then a 6DOF IPP is
no better than a VPM IPP. If small maneuvers are only possible
early in flight then a 6DOF, MLT, or MPM IPP may be required.

Notation

The following symbols are used in this paper:
Cpp = roll moment aerodynamic coefficient due to
fin cant;
C;p = roll damping aerodynamic coefficient;
Cya = pitch moment aerodynamic coefficient;
Cyo = pitch damping aerodynamic coefficient;
Cys = normal force aerodynamic coefficient;
Cypa = Magnus moment aerodynamic coefficient;
Cyo = zero yaw axial force aerodynamic coefficient;
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yaw angle squared axial force aerodynamic
coefficient;

= Magnus force aerodynamic coefficient;

center of gravity;

speed of sound;

projectile reference diameter;

acceleration of gravity;

hi/(l —hM)—hM;
IXX(CNA_CXO)/mDZCMA(d.)D/ V);
=IxxCyps! mD*Cyys(GD/2V)?;

projectile inertia matrix;

diagonal components of inertia matrix;
off-diagonal components of inertia matrix;

external moments on projectile, expressed in
no-roll frame;

mass of projectile;

projectile roll, pitch and yaw rates, expressed
in no-roll frame;

distance from center of mass to Magnus
center of pressure along station line;
distance from center of mass to center of
pressure along station line;

dimensionless arc length;

normalized time;

time;

time to go;

projectile velocity components expressed in
no-roll frame;

total velocity;

external forces on projectile expressed in
no-roll frame;

Xx,y,z = projectile position in inertial space;

X;,y; = impact position in x and y coordinates;
o, = aerodynamic angles of attack in pitch and
yaw planes;
o, = yaw of repose;

p
0,.¢, = projectile heading angles;

Ly, Ly, kg = mean of impact point prediction error in

down-range, cross-range, and radial directions;
p = atmospheric density;

0y,0y,0; = standard deviation of impact point prediction
error in down-range, cross-range, and radial
directions; and

$,0,¢ = projectile roll, pitch and yaw angles.
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