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Abstract: Weapon designers have known for some time that projectiles with low static margin
have proven to be more susceptible to launch perturbations than comparable projectiles with
high static stability, and that low static margin allows greater control authority. The work reported
here examines a mechanism for active static margin control in flight through mass centre modifi-
cation, demonstrating that such a system has significant impact on required manoeuvre control
force to achieve a given control authority. A system is developed wherein a mass translates aft
during flight inside a cavity aligned with the projectile centre-line, thereby altering the mass cen-
tre. This in turn decreases the projectile’s static margin after launch and allows greater control
authority later in flight, while at the same time decreasing initial throw-off errors. A seven-degree-
of-freedom flight dynamic model is used to predict the performance of the system. Results show
that by decreasing static margin after launch the projectile is less susceptible to launch pertur-
bations and has increased control authority through the remainder of flight, leading to a smart
projectile that outperforms rigid projectiles that are highly stable or highly manoeuvrable. This
smart weapon feature is particularly attractive when the maximum control force and moment
are small, and therefore is developed specifically for controllable munitions rather than missiles,
which often exhibit ample control authority.

Keywords: projectile stability, static margin, smart weapons, smart projectiles, variable stability,
static stability, control authority

1 INTRODUCTION

One of the primary causes of errors for smart weapons
is trajectory alterations caused by launch perturba-
tions. These trajectory alterations can be significant
in projectiles with low static stability. At the same
time, projectiles with higher static margin are less sus-
ceptible to launch uncertainties, less manoeuvrable,
and require greater control loads to provide trajec-
tory correction. As a result, smart weapon designers
are routinely faced with a trade-off when determining
centre of gravity location or aerodynamic design. The
goal is to protect against launch disturbances while
still guaranteeing reasonable force requirements from
a control mechanism.

Limited work has been reported examining the
effect of mass centre position on impact point errors.
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A notable exception is Rollstin [1], who examined the
effect of mass centre position on impact point errors
with an emphasis on lateral throw-off due to the yaw
of repose. There has been substantial research on
the effect of internal moving parts on projectile flight
dynamics and control. Early work focused on insta-
bilities caused by moving parts, while more recent
work has investigated the use of internal moving parts
as a control mechanism. Soper [2] and Murphy [3]
analytically evaluated the stability of a spinning pro-
jectile that contains a cylindrical mass fitted loosely
into a cylindrical cavity. Later, D’Amico [4] performed
a detailed series of experiments where a projectile with
a loose internal part was driven by the rotor of a freely
gimbaled gyroscope. Hodapp [5] expanded the work
of Soper [2] and Murphy [3] by considering a projec-
tile configuration with a partially restrained internal
member with a mass centre offset. More recently,
Petsopoulos et al. [6] considered employment of a
moving mass inside a re-entry vehicle to create a
means for roll control. Robinett et al. [7] used inter-
nally moving masses in a plane normal to the axis of
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symmetry of ballistic rockets to achieve control, while
Menon et al. [8] considered both exoatmospheric and
endoatmospheric interception scenarios using three
orthogonal internal translating masses as the control
mechanism. Frost and Costello [9, 10] investigated
the ability of an internal rotating mass unbalance to
actively control both fin- and spin-stabilized projec-
tiles. Most recently, Rogers and Costello [11] examined
the control authority of a projectile equipped with an
internal laterally translating mass.

This article considers a projectile configuration
whereby stability margin of the round is altered during
flight by moving an internal mass in a controlled fash-
ion along the projectile’s line of symmetry. This mass
movement occurs at some point after launch. The sys-
tem has high initial static stability and proves to be less
vulnerable to launch disturbances. After mass move-
ment, stability margin decreases and the projectile
becomes more responsive to control input. An exam-
ple case shows that the variable stability mechanism
can result in decreased throw-off error, more divert
capability, and less average force required to achieve
a given circular error probable (CEP). A range of trade
studies are reported varying the internal mass ratio,
error budget, and maximum control force. Note that
the main focus of this article is not to study the effects
of static margin on launch perturbations or control
authority, areas that have been thoroughly explored in
the past, but rather to examine the impact of a mech-
anism for active static margin control through mass
centre modification on overall system performance.
This impact is measured explicitly by the projectile’s
ability to hit the target and the control force required
to do so, given reasonable launch perturbations and
limited control authority. The system is developed
specifically for smart munitions, which routinely suf-
fer from a lack of required control authority, rather
than missiles, which often do not exhibit the same
control authority limitations.

2 VARIABLE STABILITY PROJECTILE DYNAMIC
MODEL

The system consists of two major components, namely
a main projectile body and an internal translating

mass. The main projectile body is largely a typical pro-
jectile with the exception of an internal cavity that
hosts an internal mass. The internal mass is free to
translate within the main projectile cavity. An actua-
tor inside the projectile exerts a force on the internal
mass as well as the main projectile to move the mass
inside the cavity to a desired location. A schematic of
the variable stability projectile is shown in Fig. 1. Note
that the cavity is aligned with the body centre-line (axis
of symmetry).

Two reference frames are used in development of the
equations of motion for the system, namely the inertial
and projectile reference frames. The two frames are
linked by the following orthonormal transformation
matrix⎧⎨

⎩
I P

J P

K P

⎫⎬
⎭ =

⎡
⎣ cθ cψ cθ sψ −sθ

sφsθ cψ − cφsψ sφsθ sψ + cφcψ sφcθ

cφsθ cψ + sφsψ cφsθ sψ − sφcψ cφcθ

⎤
⎦

⎧⎨
⎩

I I

J I

K I

⎫⎬
⎭

= [TIP]
⎧⎨
⎩

I I

J I

K I

⎫⎬
⎭ (1)

The cavity containing the internal translating mass is
fixed and extends along the projectile’s axis of sym-
metry, in this case the I P axis. All equations use the
following shorthand notation for trigonometric sine,
cosine, and tangent functions: sα = sin α, cα = cos α,
and tα = tan α.

Throughout the development of the equations of
motion, several different position vectors are used.The
nomenclature for position vectors is such that rα→β is
defined as the position vector from point α to point β.
The position vector of the mass centre of the two-body
system with respect to a ground fixed reference frame
is written as

rO→C = xI I + yJ I + zK I (2)

while the position of the internal translating mass with
respect to the projectile reference frame is

rC→T = (xT + s)I P (3)

The mathematical model describing the motion of
the internal translating mass projectile allows for four

Fig. 1 Schematic of the variable stability projectile configuration
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translational and three rotational rigid body degrees of
freedom. The translational degrees of freedom are the
three components of the composite body mass centre
position vector (x, y, z) and the position of the inter-
nal translating mass with respect to the projectile body
(s). The rotation degrees of freedom are the Euler roll,
pitch, and yaw angles (φ, θ , ψ) mentioned above.

The vector component operator used below out-
puts a column vector comprised of the components
of an input vector in a given frame. For example, if the
position vector from α to β is expressed in reference
frame A as rα→β = �xαβ

−→
I A + �yαβ

−→
J A + �zαβ

−→
K A, then

the vector component operator acting on this vector
yields

CA(rα→β) =
⎧⎨
⎩

�xαβ

�yαβ

�zαβ

⎫⎬
⎭ (4)

Notice that the reference frame is denoted by the
subscript on the operator. In a similar way, the cross-
product operator outputs a skew symmetric matrix
using the components of an input vector in the
reference frame denoted in the subscript

SA(rα→β) =
⎡
⎣ 0 −�zαβ �yαβ

�zαβ 0 −�xαβ

−�yαβ �xαβ 0

⎤
⎦ (5)

2.1 Kinematics

The velocity of the composite body mass centre can
be described in the inertial frame or the projectile
reference frame

vC/I = ẋI I + ẏJ I + żK I = uI P + vJ P + wK P (6)

The translational kinematic differential equations
relate these two representations of the mass centre
velocity components

⎧⎨
⎩

ẋ
ẏ
ż

⎫⎬
⎭ =

⎡
⎣cθ cψ sφsθ cψ − cφsψ cφsθ cψ + sφsψ

cθ sψ sφsθ sψ + cφcψ cφsθ sψ − sφcψ

−sθ sφcθ cφcθ

⎤
⎦

⎧⎨
⎩

u
v
w

⎫⎬
⎭

= [TIP]T

⎧⎨
⎩

u
v
w

⎫⎬
⎭ (7)

The angular velocity of the projectile with respect to
the inertial reference frame can be written in terms of
appropriate Euler angle time derivatives or in terms of
projectile frame angular velocity components

ωP/I = φ̇I P + θ̇J N + ψ̇K I = pI P + qJ P + rK p (8)

The kinematic relationship between time derivatives
of the Euler angles and projectile reference frame

angular velocity components represents the rotational
kinematic differential equations

⎧⎨
⎩

φ̇

θ̇

ψ̇

⎫⎬
⎭ =

⎡
⎣1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

⎤
⎦

⎧⎨
⎩

p
q
r

⎫⎬
⎭ (9)

The final kinematic differential equation is the trivial
relationship

ṡ = vS (10)

2.2 Dynamics

The reader is referred to reference [11] for a complete
derivation of the dynamic equations for a projec-
tile equipped with an internal translating mass. The
variable stability projectile dynamic equations used
here are formed by substituting ψT = θT = 0 into the
dynamic equations given in reference [11], repre-
senting internal translating mass movement along
the projectile centreline. Three translational dynamic
equations are derived through force balancing. The
sum of all external forces on the system must equal
the mass of the system multiplied by the acceleration
of the system mass centre, and thus three translational
dynamic equations are given by

⎧⎨
⎩

u̇
v̇
ẇ

⎫⎬
⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

X
m

Y
m

Z
m

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

−
⎡
⎢⎣

0 −r q

r 0 −p

−q p 0

⎤
⎥⎦

⎧⎨
⎩

u
v
w

⎫⎬
⎭ (11)

Additionally, another translational dynamic equation
is found by writing a force balance equation on the
translating mass and applying the well-known two
points on a rigid body formula for acceleration. This
fourth translational dynamic equation is given by

[AS1 AS2 AS3]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇
v̇
ẇ
s̈
ṗ
q̇
ṙ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= {BS} (12)

where

AS1 = mT[1, 0, 0] (13)

AS2 = mPmT

m
(14)

AS3 = −mPmT

m
[1, 0, 0]SP(rP→T) (15)
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BS = finput − cV ṡ − mTgsθ

− mT[1, 0, 0]SP(ωP/I)CP(vC/I)

− mPmT

m
[1, 0, 0]SP(ωP/I)SP(ωP/I)CP(rP→T) (16)

The rotation kinetic differential equations are
obtained by equating the I frame time rate of change
of the system angular momentum about the system
mass centre to the total applied external moments to
the system about the system mass centre

IdH P
P/I

dt
+

IdH T
T/I

dt
+ mPrC→P × aP/I + mTrC→T × aT/I

= M C (17)

Expressed in the projectile reference frame, the com-
ponents of the rotation kinetic differential equations
are

ARR

⎧⎨
⎩

ṗ
q̇
ṙ

⎫⎬
⎭ + ARS{s̈} = {BR} (18)

where

ARR = IP + IT − mT

mP
mSP(rC→T)SP(rC→T) (19)

ARS = mTSP(rC→T) (20)

BR =
⎧⎨
⎩

MX

MY

MZ

⎫⎬
⎭ − SP(�ωP/I)

×
(

IP + IT − mT

mP
mSP(rC→T)SP(rC→T)

)
CP(ωP/I)

− 2mTSP(rC→T)SP(ωP/I)

⎧⎨
⎩

ṡ
0
0

⎫⎬
⎭ (21)

The dynamic equations of motion for the internal
translating mass projectile are collectively given by
equations (7), (9) to (12), and (18). With a known set
of initial conditions for the projectile, these 14 scalar
equations are numerically integrated forward in time
using a fourth-order Runge–Kutta algorithm to obtain
a single trajectory. The model used for all simulations
below has been validated against an industry-standard
six-degree-of-freedom model to verify the accuracy
of results. Details of this validation are provided in
reference [11].

2.3 Projectile applied forces and moments

The standard aerodynamic expansion employed for
projectile flight dynamic simulation is used here. A
description of the weight force and body aerodynamic
forces and moments are provided in reference [11].

2.4 Description of translating mass controller

The control force exerted on the internal translat-
ing mass is generated by a feedback linearization
controller [12] that assumes full-state feedback. The
equation used to compute the control force is

finput = mPmT

m
[s̈command − k1(ṡ − ṡcommand)

− k0(s − scommand)] − b + AS1

⎧⎨
⎩

u̇
v̇
ẇ

⎫⎬
⎭ + AS3

⎧⎨
⎩

ṗ
q̇
ṙ

⎫⎬
⎭

(22)

where b is given by

b = −cv ṡ − mTgsθ − mT[1, 0, 0]S(ωP/I)C(vC/I)

− mPmT

m
[1, 0, 0]S(ωP/I)S(ωP/I)C(rP→T) (23)

and AS1 and AS3 are given by equations (13) and (15),
respectively. For all cases below, values of k1 = 30 and
k0 = 500 were used.

2.5 Description of flight control system

In order to perform a general analysis, it is assumed
that an unspecified control mechanism is capable of
exerting a lateral force on the projectile at some point
on the body subsequently yielding an associated con-
trol moment. The control force is limited to a specific
value. The control law used is proportional navigation
guidance (PNG) [13], a standard guidance law used
in many smart weapon designs. Proportional navi-
gation seeks to force the line of sight angle between
the projectile and the target to be constant. Therefore,
the acceleration command generated by PNG can be
written as

�AC = NC
�V Cλ̇ (24)

where �AC is the acceleration command, NC is the PNG
gain, �VC is the missile-target closing velocity, and λ

is the line-of-sight angle. Let the Lframe denote a
reference frame with unit vector I L aligned with the
line-of-sight between the projectile and the target, J L

lying in the plane formed by I P and J P, and K L com-
pleting the right-handed triad. Then equation (24) can
be expressed as

AC = −NCvC/I × ωL/I (25)

Also, noting that

ωL/I = −rC→X × vC/I

|rC→X |2
(26)
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where rC→X denotes the distance vector from the
system mass centre to the impact point, the PNG-
generated acceleration command can finally be writ-
ten as

AC = NC

|rC→X |2
vC/I × (rC→X × vC/I) (27)

All cases below use a PNG gain of 3.0.

3 RESULTS

The example projectile used to examine the effective-
ness of the variable stability mechanism is a repre-
sentative indirect fire, fin-stabilized projectile with a
reference diameter of 105 mm and approximate length
of 0.579 m. This projectile’s mass, roll inertia, and pitch
inertia are 17.606 kg, 0.0377 kg m2, and 0.8530 kg m2,
respectively. For all variable stability cases, the cavity
containing the internal mass is centred along the pro-
jectile I P axis and has a length approximately equal to
the length of the projectile.

Several case studies are examined first using rounds
not equipped with the variable stability mechanism
in order to understand the effect of centre of grav-
ity (CG) position on uncontrolled CEP for a nominal
munition, as well as to determine the effect of CG
position on required maximum control force. Once
these relationships are determined, the variable sta-
bility mechanism is introduced in a similar framework
to show its ability to both decrease ‘throw-off’ errors
and to minimize control forces required to hit a given
target. Throw-off errors, otherwise known as aero-
dynamic jump, are trajectory alterations caused by
non-zero crossing velocities and roll rates at launch,
and have been shown to contribute significantly to
dispersion. In cases where a CEP is generated, three
error budgets for initial conditions are used, referred
to as ‘low error’, ‘medium error’, and ‘high error’. The
standard deviations for each of these error budgets, as
well as the bias used in generating them, are given in
Table 1. Note that ‘σ ’ denotes standard deviation and

wind azimuth is a uniform random variable between
0 and 2π.

The first study examines the effect of CG position on
uncontrolled CEP of the example projectile. Two hun-
dred Monte Carlo cases were run for each error budget
at each CG location to generate the uncontrolled CEP.
Figure 2 shows that, as expected, CEP grows signifi-
cantly as the CG moves aft (and the projectile becomes
less statically stable). This is mainly due to initial
throw-off error experienced by the projectile during
launch. Analysis of trajectory data from these disper-
sion simulations revealed that rounds with low stabil-
ity experience significantly higher angles of attack. At
the same time, projectiles with lower stability margin
(a CG further aft) respond more to control inputs than
higher stability rounds. Figure 3 shows that the same
amount of control force generates more cross-range
in a less stable round than a more stable round. The
same case was run with zero-error initial conditions
for the same array of CG locations as in the first study
above. Throughout the trajectory, a constant control
force in the J I direction was exerted on the projectile

Fig. 2 Uncontrolled CEP versus stationline CG position

Table 1 Error budget parameters

Example indirect fire Example direct fire

States Bias σ – low σ – medium σ – high Bias σ

x (m) 0.0 0.0 0.0 0.0 0.0 0.0
y (m) 0.0 0.0 0.0 0.0 0.0 0.0
z (m) 0.0 0.0 0.0 0.0 0.0 0.0
Φ (rad) 0.0 0.0 0.0 0.0 0.0 0.0
θ (rad) 0.05 0.000 15 0.000 31 0.0005 0.0 0.000 31
ψ (rad) 0.0 0.000 08 0.000 16 0.000 25 0.0 0.000 16
u (m/s) 860.8 2.44 3.20 4.57 1731.0 6.10
v (m/s) 0.0 0.55 0.91 1.52 0.0 1.52
w (m/s) 0.0 0.55 0.91 1.52 0.0 1.52
p (rad/s) 5.0 0.8 1.5 2.0 0.0 1.5
q (rad/s) 0.0 0.6 1.0 1.7 0.0 1.0
r (rad/s) 0.0 0.6 1.0 1.7 0.0 1.0
Wind (m/s) 0.0 3.66 5.58 6.40 0.0 5.58

JAERO509 Proc. IMechE Vol. 223 Part G: J. Aerospace Engineering



932 J Rogers and M Costello

and the cross-range of the impact point was recorded.
Figures 2 and 3 demonstrate that there exists a funda-
mental trade-off in projectile design between a highly
stable round, which requires greater control force, and
a less stable round, which is more susceptible to ini-
tial throw-off error. These factors are characterized by
the ‘controllability’ effect, which refers to how respon-
sive a round is to control force, and the ‘throw-off’
effect, which refers to how vulnerable a round is to
disturbances. A Monte Carlo simulation using the con-
trolled example round examines how these two effects
interact and ultimately shows that there is a CG loca-
tion that optimizes these two effects to produce a
minimum required control force.

As described above, a PNG control law was used on
the example munition to guide the projectile to the
impact point x = 4938 m, y = −0.91 m, and z = 0.0 m.
A set of 200 Monte Carlo runs were completed for
each CG location to generate a controlled CEP. A time
history of control forces for each trajectory was col-
lected, and then all 200 time histories were averaged
to produce a single ‘average force’ value for each CG
location. Control forces, applied 15.24 cm forward of
the projectile mass centre, were limited to 266.9 N
in both the J P and K P directions, and sensor errors
were not included. The controller was activated for
4 s into each trajectory. Figure 4 shows the controlled
CEP for each CG location, while Fig. 5 shows the aver-
age force required for each CG location as described
above. Figure 4 shows that, except for marginally stable
rounds that proved either too difficult to control or suf-
fered from uncorrectable launch errors, the controller
is quite effective at hitting the target. Interestingly,
Fig. 5 shows there is actually an ‘optimum’ CG loca-
tion where control force required is at a minimum.
Rounds with CG positions forward of this require more
effort by the controller to manoeuvre the round, while

Fig. 3 Cross-range of impact point versus stationline CG
position for varying constant control forces

Fig. 4 Controlled CEP versus stationline CG position

Fig. 5 Average force required versus stationline CG
position

rounds with CG position aft of this suffer from sub-
stantial initial error and thus require more force to
correct the trajectory. In this way, the ‘controllability’
and ‘throw-off’ effects play off one another to create an
optimum CG location. These results were also verified
for an example of direct fire case for a fin-stablilized
projectile. It is interesting to note that results from
the indirect and direct fire case demonstrated that
the optimum CG location varies as a function of error
budget and range to target.

Incorporating the variable stability mechanism into
the example round, it can be shown that an increase
in the projectile’s stability for only a fraction of second
beyond launch is sufficient to mitigate most throw-off
error. Once initial perturbations of the round vanish,
the remainder of the flight can be conducted with
reduced stability with little effect on uncontrolled CEP.
For comparison purposes, two projectiles were con-
sidered. The first, referred to as the ‘reduced stability’
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round, is the example munition without the variable
stability mechanism and a CG farther aft than nom-
inal. The other, the ‘variable stability’ round, is the
example munition with the variable stability mecha-
nism incorporated. Uncontrolled CEPs were generated
for both rounds using the ‘medium error’ set of initial
conditions. For all variable stability cases below, the
mass was placed initially as far forward as possible, and
then translated aft approximately 0.3 s into the trajec-
tory. The experiment was designed such that with the
mass in the aft position the variable stability round had
identical stability characteristics to the reduced stabil-
ity round. Figure 6 shows the static margin, defined as
the distance between the total centre of pressure and
the mass centre, of both the reduced and variable sta-
bility rounds for one of the above simulations. Note
that the static margin of the variable stability round
is initially higher, and after mass translation the sta-
bility of both projectiles is identical. Figure 7 shows
the position of the translating mass with respect to the
projectile throughout the variable stability trajectory
in order to demonstrate how mass movement occurs
in flight.

Table 2 summarizes CEP results for both cases, run
for two different translating mass percentages. Notice
that, although the majority of the trajectory is flown at
identical stability margins, the variable stability round
has significantly smaller CEP than the reduced stability
round. This is due to its higher initial stability, which
allows initial errors (the primary cause of dispersion)
to be mitigated much more effectively.

With the knowledge that an optimal CG location
exists and that the use of the internal moving mass
can substantially reduce throw-off error as shown
in Table 2, the variable stability mechanism can be
implemented in a controlled round to increase con-
trol authority. In a round with a given available control
force, this is equivalent to greater control authority.

Fig. 6 Stability margin versus time for variable and
reduced stability rounds for a single simulation

Fig. 7 ITM displacement versus time for example vari-
able stability trajectory

Table 2 CEP for reduced and variable stability rounds

Impact
Internal Initial CG Final CG point
mass stationline stationline range CEP

Case percentage (m) (m) (m) (m)

1 – reduced N/A 0.3667 0.3667 4754 89.13
1 – variable 5 0.3978 0.3667 4757 55.55
2 – reduced N/A 0.3417 0.3417 4913 93.32
2 – variable 13 0.4164 0.3417 4917 54.39

To demonstrate this, the variable stability mechanism
is implemented in the example projectile along with
the PNG guidance system with control force limits of
111.2 N in both the J P and K P directions. The cavity
is approximately 12 per cent of the total projectile
volume and the translating mass is 8 per cent of the
total projectile mass. Two rigid projectiles, equivalent
in mass to the variable stability round, are also used
for comparison purposes. The first has a CG loca-
tion equal to the variable stability round’s CG location
before mass translation, while the second has a CG
location equal to that of the variable stability round
after mass translation. The rigid round with the for-
ward CG location is called ‘highly stable’, while the
round with the aft CG location is called ‘reduced stabil-
ity’. The projectile equipped with the variable stability
mechanism is referred to as ‘variable stability’.

To compare the highly stable, the reduced sta-
bility, and the variable stability rounds, the target
was placed at x = 4755 m, y = −76.2 m, and z =
0.0 m. The controller was turned on 4.0 s into the
flight, representing a reasonable amount of time
for sensor systems and other electronics to be
powered on and initialized after launch. Randomly
generated initial conditions were used: x = 0.0 m,
y = 0.0 m, z = 0.0 m, ϕ = 0.0 rad, θ = 0.0499 rad, ψ =
0.0 rad, u = 860.91 m/s, v = 1.658 m/s, w = 1.089 m/s,

JAERO509 Proc. IMechE Vol. 223 Part G: J. Aerospace Engineering



934 J Rogers and M Costello

p = 5.26 rad/s, q = −0.18 rad/s, r = 0.72 rad/s, wind
magnitude = 3.29 m/s, and wind azimuth = 5.12 rad.
Figures 8 to 10 show the trajectories, while Fig. 11
shows time histories of the magnitude of the control
forces for all three rounds. The reduced stability round
misses the target by almost 200 m because of the large
throw-off error, as can be clearly seen in Fig. 9. The
highly stable round misses the target by approximately
20 m, since there is insufficient control authority with
the given force limit to achieve the commanded cross-
range. However, the variable stability projectile hits the
target nearly exactly because of its small initial throw-
off and its relatively large control authority. Figure 11
confirms this, as the controller for both the highly
stable and the reduced stability rounds is saturated
through the entire trajectory, while the controller for
the variable stability round is out of saturation for a
significant portion of the flight. The term ‘saturation’
is used here to mean that the controller is using the

Fig. 8 Altitude versus range

Fig. 9 Cross-range versus range

Fig. 10 Zoom view of cross-range versus range near
target

Fig. 11 Control force magnitude versus time

maximum control force available to it, which oscil-
lates between the maximum available in one direction
(111.2 N) and the magnitude of the maximum avail-
able in both directions (157.3 N) as the projectile rolls.
Therefore, as seen in Fig. 11, for the variable stability
case the controller does not require all available con-
trol for the variable stability case, while for the other
cases it does. Furthermore, the average force required
is 140.6 N for the highly stable round, 149.9 N for the
reduced stability round, and 129.0 N for the variable
stability round. Note that the average force required
for the projectile equipped with the variable stabil-
ity mechanism is almost 10 per cent less than that
required for the highly stable round, and almost 17
per cent less than that required for the reduced sta-
bility round, neither of which was able to achieve the
desired divert distance.

The benefit of the variable stability mechanism can
be further explored by comparing dispersion of the
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highly stable, reduced stability, and the variable sta-
bility rounds. Figures 12 to 16 show the controlled CEP
as a function of maximum manoeuvre control force for
various internal mass sizes. Table 3 shows the change
in mass centre stationline affected by mass translation
in the variable stability round. In all cases, the mass
centre stationline after mass translation (‘aft CG sta-
tionline’) is the same, since an attempt was made to
keep a static margin of at least 2/10 calibre through-
out the entire flight. The CEPs were generated using
the ‘high error’ budget with the example projectile,
and control force was exerted 4.0 s after launch. The
95 per cent mass case (meaning that 95 per cent of
the system mass consists of the internal translating
mass) may be realized as a hollow aeroshell within
which nearly the entire mass of the projectile may
be translated. Also, note that as mass percentage is
increased, there is a corresponding change in total

Fig. 12 Controlled CEP versus maximum allowable con-
trol force, 10 per cent mass

Fig. 13 Controlled CEP versus maximum allowable con-
trol force, 30 per cent mass

Fig. 14 Controlled CEP versus maximum allowable con-
trol force, 65 per cent mass

Fig. 15 Controlled CEP versus maximum allowable con-
trol force, 95 per cent mass

Fig. 16 Controlled CEP versus maximum allowable con-
trol force, variable stability rounds
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pitch moment of inertia. Moments of inertia of the
rigid projectiles were therefore changed in each dif-
ferent mass percentage case in order to match the
variable stability mass properties with the rigid projec-
tile mass properties. In Figs 12 to 15, the controlled CEP
at zero maximum manoeuvre control force (equivalent
to uncontrolled CEP, since no force can be exerted by
the controller) for the highly stable and variable sta-
bility rounds are nearly identical, demonstrating that
both rounds exhibit the same response to initial per-
turbations. This further proves that mass translation
after initial perturbations dissipate has little effect on
the trajectory if no control force is exerted.

As Figs 12 to 15 show, the variable stability mech-
anism shows better overall performance in reducing
CEP for a given maximum force level than equivalent
rigid rounds. The reduced stability round shows less
dispersion as mass percentage increases because of
the corresponding decrease in pitch moment of iner-
tia (reducing the effect of initial perturbations). The
highly stable round actually shows more dispersion
as mass percentage increases, even though the round
is more stable throughout the flight. This is because,
as described above and in Fig. 5, the disadvantage
of reduced control authority outweighs the benefit of
increased stability at these mass centre locations.

Figure 16 shows the same variable stability CEP
curves as in Figs 12 to 15 for each mass percentage and
establishes an important design benchmark for imple-
mentation of the variable stability mechanism. It is
clear that at some mass percentage between 10 and 30
per cent, further increases in mass percentage produce
little to no benefit in reducing dispersion for a given
maximum manoeuvre control force. First, it should be
noted that all cases had the same mass centre posi-
tion after mass translation as described above, and
therefore exhibited the same control authority during
controlled portions of flight. The cases differed only
in their initial mass centre position, with the 95 per
cent case being the most stable at launch and the 10
per cent case being the least stable. However, at some
point further increases in projectile stability have little
effect on reducing launch perturbations, and there-
fore little difference is seen between the 30, 65, and 95
per cent cases. Thus in this case, a mass percentage of
between 20 and 30 per cent would probably be suffi-
cient to provide the maximum benefit that the variable

Table 3 Mass centre position for various translating
mass percentages

Forward CG Aft CG Change in
Mass stationline stationline SLNCG
percentage (m) (m) (m)

10 0.4144 0.3579 0.0547
30 0.5235 0.3579 0.1639
65 0.7147 0.3579 0.3550
95 0.8786 0.3579 0.5190

stability mechanism has to offer in terms of reducing
dispersion and increasing control effectiveness.

Figures 17 and 18, based on the results above,
demonstrate a further trade-off when considering
mass size. Figure 17 shows that for low maximum
force levels (0–45 N) the percentage decrease in CEP
resulting from the variable stability mechanism when
compared to the highly stable round is quite steep with
respect to force level, and there is a local maximum for
all mass sizes around 45–67 N. Also, note that the 95
per cent mass case shows the most improvement in
percentage decrease in CEP compared to the highly
stable round. However, Fig. 18 demonstrates that the
variable stability mechanism shows relatively constant
percentage decreases in CEP over all force levels com-
pared to the reduced stability round for each mass

Fig. 17 Percentage decrease in CEP of variable stability
projectile compared to highly stable projectile

Fig. 18 Percentage decrease in CEP of variable sta-
bility projectile compared to reduced stability
projectile
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size, and the 10 per cent mass case now shows the
greatest improvement. Therefore, the high mass per-
centage case’s improvements over the highly stable
round must be tempered by the low mass percentage
case’s improvements over the reduced stability round,
and a mass percentage in between the two extremes
would provide the best trade-off.

4 CONCLUSION

The variable stability mechanism has been devel-
oped to reduce required control forces for smart
munitions, which often suffer from a lack of control
authority. The results presented above demonstrate
that a one-time shift in the mass centre location in
flight enables optimization of projectile flight charac-
teristics by reducing throw-off error and increasing
control authority. An active control of a projectile’s
centre of gravity position using the variable stabil-
ity mechanism lets the designer have the ‘best of
both worlds’, that is a projectile with low susceptibility
to initial throw-off errors and high control authority
throughout controlled portions of flight. Trade stud-
ies performed using a seven-degree-of-freedom flight
dynamic model show that projectiles equipped with
a variable stability mechanism exhibit lower disper-
sion for a given maximum manoeuvre control force
because of decreased initial errors and increased con-
trol authority. Increases in translating mass size result
in less dispersion, although at some point no bene-
fit is obtained by further increasing mass percentage.
Flight dynamic and control improvements must be
tempered by the fact that the control mechanism adds
complexity, but probably more importantly claims
space on the round that is in high demand.

© Authors 2009
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APPENDIX

Notation

�aP/I translational acceleration of the
projectile centre of mass with respect
to the inertial frame

�aT/I translational acceleration vector of
the internal translating mass centre
of mass with respect to the inertial
frame

�AC acceleration command generated by
proportional navigation controller

cV viscous damping coefficient in the
sleeve for the internal translating
mass

C point at centre of mass of composite
projectile-translating mass system

Ci various projectile aerodynamic
coefficients

CX(y) vector component operator that
outputs a column vector comprised
the components of the input vector y
expressed in reference frame X

CEP radius of a circle centred at the mean
impact point that encircles half the
impact points in a dispersion
simulation

fInput scalar value of the input force exerted
by the controller

g acceleration due to gravity
(9.81 m/s2)

�H P

P/I angular momentum of the projectile
with respect to the inertial frame
about the projectile body mass
centre
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�H T

T/I angular momentum of the internal
translating mass with respect to the
inertial frame about the internal
translating mass centre

I I, J I, K I inertial reference frame unit vectors
I L, J L, K L line-of-sight frame unit vectors
I P, J P, K P projectile reference frame unit

vectors
IP mass moment of inertia matrix of the

projectile body with respect to the
projectile reference frame

IT mass moment of inertia matrix of the
internal translating mass with
respect to the projectile reference
frame

ITM internal translating mass
m total system mass
mP projectile body mass
mT internal translating mass
�M C

total external moment applied to the
system about the system mass
centre

MX, MY , MZ external moment components on the
projectile body expressed in the
projectile reference frame

NC proportional navigation gain
p, q, r components of the angular velocity

vector of the projectile body
expressed in the projectile reference
frame

rC→P distance vector from the centre of
mass of the system to the projectile
centre of mass

rC→T distance vector from the centre of
mass of the system to the internal
translating mass centre of mass

rC→X distance vector from the centre of
mass of the system to the desired
impact point

rP→T distance vector from the projectile
centre of mass to the internal
translating mass centre of mass

rPA cavity offset from the projectile
centre of mass

s position of the internal translating
mass along its line of movement
with respect to the centre of the
cavity

SX(y) cross-product operator that outputs
a skew-symmetric matrix using the
components of the input vector y
expressed in reference frame X

SLNCG stationline CG position referenced
from the rear of the projectile

TIP transformation matrix from the
inertial reference frame to the
projectile reference frame

u, v, w translation velocity components of
the composite body centre of mass
resolved in the projectile reference
frame

vC/I velocity of the system mass centre
with respect to the inertial frame

vT/P velocity of the internal translating
mass centre of mass with respect to
the projectile reference frame

vS magnitude of the velocity of the
translating mass with respect to the
translating mass reference frame

V C missile-target closing velocity
x, y, z position vector components of the

composite body centre of mass
expressed in the inertial reference
frame

XT distance from the centre of the
internal translating mass cavity to
the system centre of mass

X , Y , Z total external force components on
the composite body expressed in the
projectile reference frame

θT, ψT Euler pitch and yaw angles for the
orientation of the line of movement
of the internal translating mass with
respect to the projectile body

λ line-of-sight angle between a vector
from the projectile to the target and a
vector along the projectile’s axis of
symmetry

φ, θ , ψ Euler roll, pitch, and yaw angles
�ωP/I angular velocity of the projectile

body with respect to the inertial
frame

�ωL/I angular velocity of the line-of-sight
frame with respect to the inertial
frame
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