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In flight estimations of helicoptermass and center of gravity are critical for health and lifecyclemaintenance, flight

control system feedback, and mission planning. This paper explores the use of an extended state observer for online

estimation of helicopter mass and center-of-gravity location. The core algorithm is a nonlinear observer that offers

provable stability properties. After describing the methodology, it is applied to a simulation of a commercial radio-

controlledmicrocoaxial helicopter.MonteCarlo trade studies employing a comprehensive rotorcraft flight dynamics

model are used to assess the algorithm’s estimation accuracy in the presence of model and measurement errors.

Results show the helicopter mass, longitudinal center-of-gravity location, and lateral center-of-gravity location are

estimated accurately in the presence of expected errors. The vertical center-of-gravity position is more difficult to

estimate due to its limited observability during typical maneuvers.

Nomenclature

A = rotor disk area
A0 = grouped angular acceleration term that does

not include a rotor flap angle second derivative
Cd, Cl = blade element coefficients of drag and lift
CLR, CUR = coefficients of motor thrust for the lower and

upper rotors
Clon, Clat = coefficients of longitudinal and lateral

swashplate angles
c = rotor blade chord
cX, sX = cosine and sine of X
D = reference diameter
FDL = body force due to vertical download
FRXX = total rotor forces in the XX-axis direction
FRAXX = aerodynamic forces in the XX-axis direction
fCGXX = filter function for estimating vehicle center-

of-gravity component XX
fDB = deadband function
fDL = equivalent vertical flat-plate drag area
fm = filter function for estimating vehicle mass
g = gravity constant (9.81 m∕s2)
H0 = grouped angularmomentum term that does not

include a rotor flap angle second derivative
�I� = moment of inertia matrix of the vehicle
�IXX, �JXX, �KXX = unit vectors in the specified XX reference

frame
�IbXX = moment of inertia of rotor blade in XX

direction
kpXX , kdXX = estimation filter gains formass and horizontal

center-of-gravity location
kz1, kz2 = estimation filter gains for vertical center-of-

gravity location
kβ = rotor blade spring constant
k1, k2, k3 = extended state observer gains

L,M, N = components of the total external moment
acting on the vehicle expressed in the body
reference frame

LB = distance from the rotor hinge point to the
blade tip

LBA,MBA,NBA = components of the fuselage aerodynamic
forces expressed in the body reference frame

l1, l2, l3 = extended state observer functions
l� = distance from the rotor hinge point to the

center of gravity of a rotor blade
M = bound for extended state observer uncertainty

error
MRXX = total rotor system moment about the XX axis
MRAXX = aerodynamic moment about the XX axis
MS = spring moment about the rotor hinge point
m = mass of vehicle
mb = mass of a rotor blade
mRXX = reaction moments of the rotor system acting

on the airframe about the XX axis
~m = estimate for mass of vehicle
N = bound for dynamic system uncertainty

derivative
NB = number of rotor blades
nm = number of measurements for system identi-

fication
np = number of model parameters for system

identification
p, q, r = body reference frame components of angular

rate for roll, pitch, and yaw
RXX = reaction force of the rotor system acting on

the airframe in the XX direction
�rA→B = position vector from point A to point B
~rCGXX = estimate of center-of-gravity location in the

XX direction
S = reference area
SX�Y� = skew-symmetric matrix representation of the

vector Y expressed in the reference frame X
T = rotor thrust
�TA→B� = transformationmatrix from frameA to frameB
t = current time
u, v, w = translational velocity components of the

vehicle mass center expressed in the body
reference frame

uCP, vCP, wCP = translational velocity components at the cen-
ter of pressure expressed in the body refer-
ence frame

uLR, uUR = lower and upper motor throttle inputs
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uR, uT , uP = aerodynamic velocity components at a rotor
blade element aerodynamic center in the
radial, tangential, and perpendicular direc-
tions

uw, vw, ww = wind-velocity components expressed in the
body reference frame

uϕ, uθ = longitudinal and lateral cyclic swashplate
inputs

V = body translational velocity magnitude
Vc = vertical climb velocity
VCP = velocity magnitude at the center of pressure
VatmXX

= atmospheric wind disturbance components
expressed in the XX direction

V0XX
= body translational velocity component ex-

pressed in the hub frame XX direction
vh = induced inflow velocity at hover
vi = induced inflow velocity
vk = measurement value with noise
�v = average velocity of the rotor wake
�vCG = translational velocity vector of the vehicle’s

center of gravity
X, Y, Z = components of the total external force acting

on thevehicle expressed in the body reference
frame

XBA, YBA, ZBA = components of the fuselage aerodynamic
forces expressed in the body reference frame

XG, YG, ZG = components of the force due to gravity acting
on thevehicle expressed in the body reference
frame

x, y, z = position vector components of vehicle
expressed in the inertial reference frame

x1, x2 = dynamic system states
~x1, ~x2, ~x3 = dynamic system state estimates from the

extended state observer
yk = state truth value
α = angle of attack
β = rotor blade flapping angle
β0, β1C, β1S = rotor blade collective, longitudinal cyclic,

and lateral cyclic flapping angles
Δ = model uncertainty
ΔD, ΔL = blade element lift and drag
Δr = blade element width
δ = saturation function boundary-layer thickness
ϵ = extended state observer update parameter
ε = rotor blade hinge offset
ηk = measurement noise
η1, η2, η3 = extended state observer error terms
�η = extended state observer error vector
θ�t� = rotor blade
θ0, θ1C, θ1S = rotor blade collective, cyclic longitudinal,

and lateral pitch angles
θtwist = rotor blade twist pitch
ρ = atmospheric density
τM = motor time constant
τSW = swashplate time constant
ϕ, θ, ψ = Euler rotation angles for roll, pitch, and yaw
ψR = rotor blade azimuth angle
Ω = angular rate of rotor in the shaft frame
ΩLR, ΩUR = angular velocity of the lower and upper rotors
Ω0XX

= angular velocity components of the hub frame
with respect to the inertial frame

�ωX∕Y = angular velocity vector of reference frame X
with respect to reference frame Y

Subscripts

B = body
BL = rotor blade
H = hub
I = inertial
S = shaft

I. Introduction

T HE utility of rotorcraft has enabled them to fly a wide array of
civilian andmilitarymissions,many ofwhich require operations

resulting in a the quick change of vehicle mass and center-of-gravity
(CG) location, such as the loading or unloading of cargo and troops,
the pickup and transportation of injured persons, the dropping of
water to fight forest fires, etc. These missions commonly occur in
dangerous environments or under time constraints when a thorough
measurement of the mass properties of passengers or payload is not
realistic. Uncertainty due to mass loading can affect stability, perfor-
mance, maintenance costs, and fuel economy of rotorcraft. As a
result, inflight estimation of vehicle mass and CG location are in-
creasingly important for rotorcraft operations. Current flight condi-
tions can be fed back to advanced automatic flight control systems for
mission planning to ensure safe operation in various flight regimes as
well as enhance gain scheduling tomaintain desired vehicle handling
qualities. Additionally, mass properties can be used for condition-
based maintenance as part of a health-and-usage monitoring system
to properly estimate the fatigue and wear of components, which
reduces operating costs and improves safety.
Multiple methods have been presented for estimation of vehicle

mass properties in flight. Bateman patented a method to measure the
weight and center-of-gravity location through the landing gear before
takeoff and then used the aircraft’s fuel burn rate to estimate move-
ment of the CG in flight [1]. Glover patented a technique that com-
bined the measurements of two accelerometers, one placed in the
front of the aircraft and one placed in the rear, to capture the pitching
motion of the aircraft for longitudinal CG location estimation [2].
Moffatt used hover performance charts to develop a helicopter esti-
mation algorithm that was a function of engine torque, altitude, pres-
sure, and atmospheric temperature [3]. More recent methods include
neural-network-based approaches such as the work of Morales and
Haas, who used a neural network to estimate the helicopter gross
weight in the hover regime [4]. Bi et al. employed a neural network
for inflight estimation of the gross weight and CG location for the V-
22 [5]. Idan et al. trained a neural network to estimate the weight and
CG at various trimmed flight conditions: hover, climb, cruise, decent,
etc. [6]. Overall, neural networks have been shown to adequately
estimate helicopter mass properties if properly trained. However,
training can be intensive and requires a sufficient amount of data.
Another recent method is the extended Kalman filter (EKF) tech-
nique proposed by Abraham and Costello, which fuses sensor data
and a system model for mass properties state estimation in the
presence of measurement error [7]. Taylor and Rogers applied this
EKF technique to experimentally estimate the weight of a radio-
controlled helicopter [8]. In both efforts [7,8], an EKF was shown to
accurately estimate the weight and CG location, although the accu-
racy degradedwith increasingmodel andmeasurement errors. Apetre
et al. combined a neural network with an EKF to create a hybrid
algorithm that leveraged both approaches to improve estimations
while combating each method’s individual issues [9]. There are two
main difficulties with an EKF-based mass properties estimation
algorithm. Extended Kalman filters are sensitive to model errors,
resulting in significant estimation errors of themass and CG location.
Furthermore, the linearization of the system for state propagation and
measurement state update leads to a filter that is not necessarily stable
and can diverge [10]. This is especially true for highly nonlinear
plants.
In this work, an extended state observer (ESO)-based algorithm is

developed for helicopter mass and CG estimation. First proposed by
Han [11], the ESO is a high-gain observer with an augmented state to
estimate uncertainty in the system dynamics from any unknown
source of error, such as model mismatch or an external disturbance.
The ESO is a critical component of active disturbance rejection
control (ADRC) algorithms. Also developed by Han [12], ADRC
combines the nonlinear feedback of a dynamic inversion controller
with an ESO, using an estimation of model uncertainty and external
disturbances to enable precise control. The ADRC architecture
including an ESO has been applied in a variety of engineering fields,
including tension controls for industrial web tension regulation by
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Houet al. [13], precisemotion control of robotic platforms bySu et al.
[14], aircraft flight control by Huang et al. [15], and rejection of
vertical and yaw channel gusts for an unmanned rotorcraft byMartini
et al. [16] and Lénoard et al. [17]. Since model mismatch caused by
uncertainty in mass and CG location can be estimated as part of the
total disturbance of a system, an ESO algorithm can be implemented
to estimate helicopter mass properties in real time. A nice feature of
the ESO is that it enables rigorous proof of observer stability for
nonlinear systems. This is, of course, in contrast to extended Kalman
filters that do not possess this feature.
This paper begins with a description of a comprehensive flight

dynamics simulation of a commercial radio controlled (RC)
helicopter. Then, a description of the general ESO algorithm is given,
followed by details of the mass and CG estimation algorithm for the
nonlinear helicopter model; after which, the results of Monte Carlo
simulation trade studies for the algorithm given model and measure-
ment error are presented, along with conclusions for this work.

II. Coaxial Helicopter Dynamic Model

A mass and CG location estimation algorithm based on an ESO
is applied to a nonlinear coaxial helicopter model to assess its
usefulness. The dynamic model is based on a commercial radio-
controlled microcoaxial helicopter; Fig. 1. The vehicle weighs 60 g
and has a main rotor diameter of 176 mm, with two blades per rotor.
The rotorcraft’s two counterrotating rotors are driven by electric
motors. Thrust is controlled by changing the speed of each rotor
simultaneously, whereas yaw control is achieved through changing
the speed of each rotor differentially. The microcoaxial helicopter is
also outfittedwith awireless inertial-measurement-unit (IMU) circuit
board developed by the University of California, Berkeley [18]. This
board acts as a sensor mote (a node in a wireless sensor network),
providing telemetry as well as control of servomotors and motors.
Information is transmitted to and from the vehicle using a universal
serial bus (USB) base station. This section provides a development
of all the major flight dynamic model components as well as the
experiments performed for system identification andmodel validation.
The translational velocity of vehicle center of gravity can be

expressed as

�vCG � _x �II � _y �JI � _z �KI � u �IB � v �JB �w �KB (1)

where I and B represent the inertial and body reference frames. The
inertial reference frame I is attached to the ground, assuming a flat-
Earth approximation and �KI down. The body reference frame B is
fixed to the vehicle with its origin at the center of gravity. The �IB
vector points out the vehicle nose, �JB out the right or starboard side,
and �KB down out the bottom of the vehicle. The body frame is related
to the inertial frame through the conventional Euler angle

transformation. Thus, the inertial and body framevelocity components
are related through the translational kinematic differential equations:

8<
:

_x
_y
_z

9=
; �

2
4 cθcψ sϕsθcψ − cϕsψ cϕsθcψ � sϕsψ
cθsψ sϕsθsψ � cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

3
5
8<
:
u
v
w

9=
; (2)

where cX � cos�X� and sX � sin�X�. The angular velocity of the
vehicle with respect to the inertial frame is written as

�ωB∕I � _ϕ �IB � _θ �JN � _ψ �KI � p �IB � q �JB � r �KB (3)

where N is an intermediate frame in the conventional Euler angle
rotation. The rotational kinematic differential equations can be
expressed as

8<
:

_ϕ
_θ
_ψ

9=
; �

2
4 1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ∕cθ cϕ∕cθ

3
5(pq

r

)
(4)

The translational and rotational dynamic equations of the vehicle
center of gravity are expressed in the body frame as8<

:
_u
_v
_w

9=
; �

2
4 0 r −q
−r 0 p
q −p 0

3
5( uv

w

)
�
(
X∕m
Y∕m
Z∕m

)
(5)

8<
:

_p
_q
_r

9=
; �

h
I
i−124 0 r −q

−r 0 p
q −p 0

3
5hIi

(
p
q
r

)
�
h
I
i−1( L

M
N

)
(6)

wherem is the vehicle mass; �I� is the mass moment of inertia matrix;
and X, Y, Z, L, M, and N are the summed external forces and mo-
ments acting on the vehicle. The major external forces and moments
are gravity, aerodynamic drag, and download due to the rotor wake as
well as the forces and moments due to the vertical tail, the rotors, and
the flybar.
The major components of the nonlinear rotorcraft model include

aircraft dynamics; rotor inflow and wake modeling; control motor

Fig. 1 Microcoaxial helicopter used to develop and validate the flight
dynamics model.

Fig. 2 Illustrations of rotor blade model: a) relevant parameters and
states, and b) relevant free body diagram of blade forces and moments.
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and servomotor dynamics; and a rotor systemmodel used to simulate
nonlinear rotor flapping dynamics and calculate rotor loads for the
lower rotor, upper rotor, and flybar.
The rotor systemmodel employs a blade-element-based numerical

algorithm to calculate flapping dynamics and constraint loads, as
illustrated in Fig. 2. The reference frames associated with rotor
flapping are the shaft frame S (fixed to the nonrotating shaft with its
origin at the rotor hub, �IS pointing toward the vehicle tail, and �KS
pointing up), the hub frame H (fixed to rotating rotor hub with �IH
pointing along the rotor blade and �KH pointing upward along the
rotor shaft), and the blade frame BL (fixed to rotor blade with �IBL
along the blade, �JBL pointing out the leading edge, and �KBL pointing
up). The flexible rotor blade is approximated as rigidwith an effective
hinge offset and associated spring constant. Additionally, it is as-
sumed that the rotor dynamics are sufficiently faster than the vehicle
body dynamics, such that the body rates are constant in the rotor
flapping dynamic equations. The individual blade flapping dynamics
are derived by taking the sum ofmoments about the blade hinge point
F, as shown in Fig. 2b. A single-degree-of-freedom equation of
motion for blade flapping is formulated by solving for the second
derivative of the flap angle:

�β �
MRAy � kββ�mbgl�cβ −H0 �mbl�A0

−Ibyy −mbl
�2 (7)

whereMRAy is the aerodynamic moment generated by the rotor about
�JH; kβ is the torsional spring constant; and H0 and A0 represent,
respectively, the grouped angular momentum and acceleration terms
that do not include a second derivative of the flap angle.
The aerodynamic forces and moments generated by the rotor are

calculated by splitting the rotor blade into a finite number of ele-
ments. The radial, tangential, and perpendicular aerodynamic veloc-
ity components (uR, uT , uP) are a function of the hub velocity, body
angular velocity, rotor angular velocity, induced rotor inflow, and
wind disturbances at the blade section

8><
>:
uR

uT

uP

9>=
>;�

8>><
>>:
V0x

V0y

V0z

9>>=
>>;�

2
664

0 −Ω0z Ω0y

Ω0z 0 −Ω0x

−Ω0y Ω0x 0

3
775
8><
>:
r0→Fx

r0→Fy

r0→Fz

9>=
>;

�

2
664

0 −ωBL∕Iz ωBL∕Iy

ωBL∕Iz 0 ωBLx

−ωBL∕Iy ωBL∕Ix 0

3
775
8><
>:
rF→px

rF→py

rF→pz

9>=
>;−

8><
>:
vatmx

vatmy

vatmz

9>=
>;−

8><
>:
0

0

vi

9>=
>; (8)

where r0→Fx , r0→Fy , and r0→Fz are the position vector components
from the hub center to the blade hinge point; rF→px , rF→py , and rF→pz
are the position vector components from the blade hinge point to the
center of blade element section;V0x

,V0y
, andV0z

are the hub velocity
components;Vatmx

,Vatmy
, andVatmz

are the atmospheric wind distur-
bance components; Ω0x

, Ω0y
, and Ω0z

are the angular velocity
components of the hub frame with respect to the inertial frame;
ωBL∕Ix ,ωBL∕Iy , andωBL∕Iz are the angular velocity components of the
blade frame with respect to the inertial frame; and vi is the induced
rotor inflow velocity.
Blade pitch is controlled through the swashplate as

θ�t� � θ0 � θtwist
ε� rF→px
ε� L − θ1C�t� cos�ψR� − θ1S�t� sin�ψR�

(9)

where θ0 is the collective pitch, θtwist is the blade twist, θ1C is the
longitudinal cyclic pitch, and θ1S is the lateral cyclic pitch. Given the
velocity components and blade pitch, the section rotor aerodynamic
loads are expressed in Eqs. (10) and (11). The aerodynamic forces
and moments for each element section can then be summed over the
blade to obtain the total rotor blade aerodynamic load:

8<
:
ΔFRAx
ΔFRAy
ΔFRAz

9=
;�

8<
:

0

−cϕΔD− sϕΔL
cϕΔL− sϕΔD

9=
;� 1

2
ρV2cΔr

8<
:

0

−cϕCd− sϕCl
cϕCl− sϕCd

9=
;

(10)

8<
:
ΔMRAx
ΔMRAy

ΔMRAz

9=
; � SH� �rF→P�

8<
:
ΔFRAx
ΔFRAy
ΔFRAz

9=
; (11)

Although the preceding equations developed are for a single blade,
a rotor system with NB blades will have NB degrees of freedom
associated with the rigid rotor blade flapping. Rather than modeling
each blade individually, the entire rotor system ismodeled as awhole.
Since the blade pitch control inputs excite the system in a first
harmonic manner, it is reasonable to assume the main flapping
response is also first harmonic:

β�t� � β0�t� � β1C�t� cos�ψR� � β1S�t� sin�ψR� (12)

where β0 is the coning angle, β1C is the longitudinal flap angle, and
β1S is the lateral flap angle.
It should be noted that the transformation from individual blade to

multiblade coordinates is general in nature and capable of repre-
senting higher fidelity than first harmonic motion; however, this
approximation captures the majority of the rotor motion for flight
dynamics purposes. The three equations of motion for first harmonic
flapping are found through harmonic balancing [19], where the first
harmonic expansion is substituted into the flapping equations of
motion and the constant, cosine, and sine harmonic components are
calculated:

�β0 �
1

2π

Z2π
0

�β dψR (13)

�β1C � β1CΩ2 − 2Ω_β1S �
1

π

Z2π
0

�β cos�ψR� dψR (14)

�β1S � β1SΩ2 � 2Ω_β1C �
1

π

Z2π
0

�β sin�ψR� dψR (15)

In the preceding equations,Ω is the rotor angular velocity and �β is
calculated from Eq. (7). The rotor forces and moments transferred to
the vehicle frame are the reaction forces and moments at the rotor
blade effective flap hinge joint.
For flight dynamics analysis, the constant rotor loads are the

primary interest, and the total rotor forces and moments on the parent
vehicle body are summed over the entire rotor disk, as shown in
Eqs. (16) and (17):

8<
:
FRX
FRY
FRZ

9=
; � NB2π

Z2π
0

−�TB→H �T �TH→BL�T
8<
:
RX
RY
RZ

9=
; dψR (16)

8>><
>>:
MRX

MRY

MRZ

9>>=
>>; �

NB
2π

Z2π
0

−�TB→H �T �TH→BL�T

2
664
1 0

0 0

0 1

3
775
�mRX
mRZ

�
dψR

� NB
2π

Z2π
0

−�TB→H �T

2
664
0 0 0

0 0 −ε

0 ε 0

3
775�TH→BL�T

8>><
>>:
RX

RY

RZ

9>>=
>>; dψR (17)

4 Article in Advance / ZAROVYAND COSTELLO

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

Se
pt

em
be

r 
28

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.C

03
31

12
 



where RXX and mRXX are the reaction forces and moments of a rotor
blade, and �TB→H � and �TH→BL� are rotation matrices for the hub and
blade reference frames. Expressions for the rotor blade reaction
forces and moments are derived by taking linear acceleration of the
blade and the sumofmoments about the hinge point. The expressions
will have inertial and aerodynamic terms; however, it is assumed that,
in the hover and low-speed forward-flight regions in which themodel
will be used, the aerodynamic terms dominate the inertia terms.
Therefore, the reaction forces and moments are approximated as8<

:
RX
RY
RZ

9=
; ≈ −

8<
:
FRAX
FRAY
FRAZ

9=
; and

�
mRX
mRZ

�
≈
�
MRAX
MRAZ

�
(18)

The coaxial helicopter configuration includes the lower rotor,
upper rotor, and flybar. The flybar is approximated as a teetering rigid
rotor that only produces drag. The upper rotor cyclic pitch inputs are
controlled by the flybar through a pitch linkage. It is assumed the
flybar upper rotor pitch linkages are rigid and do not affect themotion
of the flybar. The relation between flybar flap angle and upper rotor
pitch input is developed from linkage geometry.
The rotors are driven by brushed dc motors that are modeled as

first-order systems�
_ΩLR
_ΩUR

�
� 1

τM

�
CLRuLR −ΩLR

CURuUR − ΩUR

�
(19)

where τM is the motor time constant, uLR and uUR are the motor
throttle inputs, andCLR andCUR are themotor coefficients. The lower
rotor is controlled by cyclic inputs of a swashplate, which is driven by
servomotors. The swashplate angles are also modeled as first-order
responses �

_θ1C
_θ1S

�
� 1

τSW

�
Clonulon − θ1C
Clatulat − θ1C

�
(20)

Rotor inflow is calculated using Glauert’s flow model. It is
assumed that the inflow is uniform across the rotor disk and is quasi-
steady compared to all other vehicle dynamics. Employing the mo-
mentum theory of air moving through the rotor disk, a transcendental
equation is derived and a Newton–Rhapson iteration is employed to
solve for the inflow:

v4i � 2V sin�α�v3i � V2v2i �
�
T

2ρA

�
2

(21)

The momentum theory is not valid in axial descent when the rotor
wake convects back up into the rotor. Leishman [20] proposed a
continuous approximation for induced inflow given by

vi
vh
� κ � k1

�
Vc
vh

�
� k2

�
Vc
vh

�
2

� k3
�
Vc
vh

�
3

� k4
�
Vc
vh

�
4

(22)

where Vc is the vertical climb velocity, vh is the inflow velocity at
hover, κ � 1.0, k1 � −1.125, k2 � −1.372, k3 � −1.718, and
k4 � −0.655. Equation (22) is valid for the range −2 ≤ Vc∕vh ≤ 0
when the vehicle is in vertical descent. Additionally, the upper rotor
wake affects the inflow of the lower rotor and, for simplicity, it is
assumed the wake is fully contracted. To account for the convection
of the wake in forward flight, longitudinal and lateral wake skew
angles are used to determine the location of the wake relative to the
lower rotor. It is assumed that the lower rotor has no effect on the
upper rotor. Vertical download force on the fuselage due to the rotor
wakes is modeled according to Leishman [20] as

FDL �
1

2
ρ �v2fDL (23)

where fDL is the equivalent vertical flat-plate drag area, and �v is the
average velocity of the rotor wake.

Besides rotor forces and moments, the other external forces
and moments acting on the helicopter airframe are gravity and
aerodynamic drag on the fuselage and tail. The gravity forces in the
body frame are 8<

:
XG
YG
ZG

9=
; � mg

8<
:

sθ
−sϕcθ
−cϕcθ

9=
; (24)

whereas the fuselage aerodynamic forces are modeled as a drag force
acting on the vehicle center of pressure as8<

:
XBA
YBA
ZBA

9=
; � −

1

2
ρVCPS

8<
:
CDxuCP
CDyvCP
CDzwCP

9=
; (25)

where

VCP �
������������������������������������
u2CP � v2CP �w2

CP

q
(26)

The aerodynamic velocity components at the center of pressure
can be expressed in the body frame as

(
uCP
vCP
wCP

)
�
(
u
v
w

)
�
"

0 −r q
r 0 −p
−q p 0

#8<
:
rCG→CPx

rCG→CPy

rCG→CPz

9=
; −

(
uw
vw
ww

)

(27)

where rCG→CPx
, rCG→CPy

, and rCG→CPz
are the position vector com-

ponents from the center of mass to the center of pressure in the body
frame; and uw, vw, and ww are the wind components at the vehicle
center of gravity that vary with time and spatial location. The body
aerodynamic moments about the center of mass are8>><

>>:
LBA

MBA

NBA

9>>=
>>; �

1

2
ρVCPSD

2

8>><
>>:
Clpp

Cmqq

Cnrr

9>>=
>>;

�

2
664

0 −rCG→Cz rCG→CPy

rCG→Cz 0 −rCG→CPx

−rCG→CPy
rCG→CPx

0

3
775
8>><
>>:
XBA

YBA

ZBA

9>>=
>>; (28)

During system identification experiments, it was found that the lift
forces of the vertical tail are extremely small, especially in the hover
and low-speed flight regimes in which the microcoaxial helicopter
operates. Thus, the lift forces are neglected and the forces and
moments generated by the vertical tail are modeled as a drag force
acting on the tail center of pressure.
The model parameters are fit through system identification of the

commercial microcoaxial helicopter; Fig. 1. The system identifica-
tion procedure involves four steps: direct measurement, estimation
from benchtop experiments, flight experiments, and fine tuning. Pa-
rameters that can be directly measured through simple means (ruler,
scale, etc.) include vehicle mass, rotor radius and chord, blade mass,
blade collective pitch and twist, flybar mass, flybar and swashplate
phase angles, upper rotor–flybar linkage lengths, motor coefficients,
and distances from the reference point to the rotor hubs.
Simple benchtop tests are performed to estimate parameters that

cannot be directly measured. The goal of these tests is to reduce the
number of parameters thatmust be identified from flight experiments.
The parameters identified from benchtop tests include the rotor blade
effective hinge offset and spring constant, as well as the rotor blade
lift and drag coefficients. The effective hinge offset and spring con-
stant are estimated by adding weights to the blade tip and measuring
the deflection. The blade cross section is a circular arc airfoil for almost
the entire length. Based on this shape, the blade sectional lift and drag
coefficients are estimated from airfoil theory and experimental trends
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based on the work of Katz and Plotkin [21], Prouty [22], Hoerner
[23], and Costello and Beyer [24].
Piloted flight tests are performed to estimate parameters that could

not be directly measured or estimated from benchtop tests. Amotion-
capture facility in the Georgia Institute of Technology Indoor Flight
Facility (Fig. 3) using Vicon cameras measured vehicle position and
attitude during flight, whereas the onboard electronics recorded
control inputs and body angular rates. Flight-test maneuvers were
designed to excite the steady-state and dynamic responses of the
platform for each control channel, which included hover as well as
vertical, yaw, roll, and pitch channel maneuvers.
An output error method is employed to estimate model parameters

from a time-domain evaluation of vehicle response [25]. For each
channel’s maneuver, the appropriate variables are tuned to fit the
channel state time histories as exemplified by the vertical channel
identification data shown in Fig. 4. After flight experiments, a few
final parameters including center-of-gravity location, flybar drag
coefficient, and blade lift and drag coefficients are fine tuned to
ensure the vehicle trims properly in hover. Additionally, the fuselage
drag coefficients are tuned so that the predicted maximum flight
speed matches the experimental vehicle. To validate the model, addi-
tional flight maneuvers are performed and the response simulated
using the identified parameters.
Bounds for all parameters are estimated for confidence intervals of

95%.For directmeasurement parameters,measurements are repeated
to calculate confidence intervals using Student’s t-distribution
method [26]. For all other parameters, confidence intervals are
estimated by inverting the “extra sum of squares” [27]. Given the
vector of estimated model parameters, one parameter is fixed at a

perturbed value. Then, the system identification routine is performed
again and remaining model parameters are optimized. Next, a test
statistic is calculated from the residual sum of squares for the per-
turbed model and the original model. Using the test statistic, a signed
square root can be found. The signed square root is an approximation
of the t statistic with a distribution of tnm−np , where np is the number
of model parameters and nm is the total number of measurements.
Therefore, each parameter is fixed at a series of values above and
below the estimated value, and the t statistic for 95% confidence and
the associated parameter bounds can be found through interpolation.
Table 1 shows the estimates and bounds with 95% confidence for the
major model parameters.
Overall, the identified rotorcraft dynamics model captures mea-

sured motion of the experimental platform, including all major
vehicle effects. The limits of the model result from some base
assumptions: specifically, steady-state aerodynamics, rotor blade lift
and drag profiles, and inflow approximations in the vortex ring and
turbulentwake states. All these represent reasonable approximations,
and the model simulates a realistic response over most of the vehicle
flight envelope.

III. Extended State Observer

Consider a dynamic system of the form�
_x1
_x2

�
�
�

x2
~F� ~G� Δ

�
(29)

where ~F � ~F�x�, ~G � ~G�x; u�, and Δ is the uncertainty caused by
any source, such as model error and unknown external disturbances.
An observer is proposed with an extended state:8<

:
_~x1
_~x2
_~x3

9=
; �

8<
:

~x2 � ϵl1
~F� ~G� ~x3 � l2

�1∕ϵ�l3

9=
; (30)

The purpose of the extended state ~x3 is to estimate unknown
disturbances and uncertainties. The ESO functions l1, l2, and l3 are
included to guide the dynamics of the estimation error, which can be
defined as �η where �ηT � � η1 η2 η3 � with η1 � x1− ~x1

ϵ2
, η2 � x2− ~x2

ϵ ,
and η3 � Δ − ~x3. Then, the error dynamics can be expressed as

_η1 �
_x1 − _~x1
ϵ2

� x2 − ~x2 − ϵl1

ϵ2
� η2 − l1

ϵ
(31)

_η2 �
_x2 − _~x2

ϵ
� Δ − ~x3 − l2

ϵ
� η3 − l2

ϵ
(32)

_η3 � _Δ −
l3

ϵ
� ϵ _Δ − l3

ϵ
(33)

microautonomous vehicle

retroreflective markers

workstation

cameras

Fig. 3 Georgia Institute ofTechnology IndoorFlight FacilitywithVicon
motion-capture system.
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or in vector form as

_�η �
(
_η1
_η2
_η3

)
� 1

ϵ

( η2 − l1

η3 − l2

ϵ _Δ − l3

)
(34)

The objective is to design the observer such that �η is driven to a
small value with stable error dynamics. The stability of the error
dynamics can be examined through Lyapunov stability theory. Given
the Lyapunov function

V � 1

2
�ηT �η (35)

the time derivative of the function is

_V � 1

2
�_�ηT �η� �ηT _�η� � �ηT _�η (36)

Substituting in Eq. (34) and removing the constant 1∕ϵwithout the
loss of generality, Eq. (36) becomes

_V � η1�η2 − l1� � η2�η3 − l2� � η3�ϵ _Δ − l3� (37)

which can be rearranged as

_V � �η1�η2 − l1� − η2l2� � η3�η2 � ϵ _Δ − l3� (38)

Thus, the ESO functions can be designed as

l1 � η2 � k1 sat�η1; δ1� (39)

l2 � k2 sat�η2; δ2� (40)

l3 � k3η2 (41)

where sat�η; δ� is a saturation function with a boundary layer:

sat�η; δ� �
�

η∕δ if jη∕δj ≤ 1

sign�η� if jη∕δj > 1
(42)

Equation (38) can then be rewritten as

_V��−k1η1 sat�η1;δ1�−k2η2 sat�η2;δ2���η3�ϵ _Δ−η2�k3−1�� (43)

It is reasonable to assume that the uncertainty and external
disturbances are bounded; thus, η3 ≤ M and j _Δj ≤ N:

_V ≤ �−k1η1 sat�η1; δ1� − k2η2 sat�η2; δ2�� − η2M�k3 − 1� � η3ϵN

(44)

Therefore ϵ, k1, k2, and k3 can be selected so _V ≤ 0, and the error
dynamics are bounded and stable. Methods of estimating N in
Eq. (44) are dependent on the type of system. For systems where the
user is confident of the accuracy of the model, the simulation model
can be leveraged. Errors added to model parameters and external
disturbances can be propagated through the simulation to calculate
the uncertainty and its corresponding derivative. By looking at the
expected errors and disturbances, the bounds of the uncertainty
parameters can be estimated. This can be performed analytically for
simpler models or numerically for complex nonlinear models. For
systems with unmodeled or highly unknown dynamics, an experi-
mental approach can be taken. Experimental measurements can be
postprocessed using the ESO model to calculate the uncertainty. By
measuring the system under various conditions, the bounds can be
estimated.

IV. Mass Properties Estimation Algorithm with ESO

Extended state observers provide a bounded converging estima-
tion of the total disturbances acting on a dynamic system. The
disturbances due to mass and center-of-gravity model errors can be
isolated and used to improve parameter estimates. Filters are
designed to use the observer states as feedback to update mass and
CG parameter estimates

8>>>><
>>>>:

_~m
_~r CGx
_~r CGy
_~r CGz

9>>>>=
>>>>;
�

8>>>><
>>>>:

fm� ~x; _~x�
fCGx� ~x; _~x�
fCGy� ~x; _~x�
fCGz� ~x; _~x�

9>>>>=
>>>>;

(45)

where ~x � � ~x1 ~x2 ~x3 �T . There are many possible filter designs to
isolate the uncertainties to estimatemass properties. As seen in Fig. 5,
model errors in mass, longitudinal CG location, and lateral CG

Table 1 Helicopter model parameter confidence intervals

Parameter Description Mean value Lower bound Upper bound Units Source of bounds

m Vehicle mass 0.06038 0.06037 0.06039 kg Measured
Ixx Vehicle mass moment of inertia: x 4.952E − 5 3.878E − 5 6.570E − 5 kg · m2 Inverting sum of squares
Iyy Vehicle mass moment of inertia: y 1.603E − 4 1.347E − 4 2.060E − 4 kg · m2 Inverting sum of squares
Izz Vehicle mass moment of inertia: z 1.028E − 6 5.138E − 7 1.541E − 6 kg · m2 Inverting sum of squares
Cdx Vehicle drag coefficient: x 0.5501 0.4859 0.6143 nd Inverting sum of squares
Cdy Vehicle drag coefficient: y 0.2979 0.2532 0.3426 nd Inverting sum of squares
Cdz Vehicle drag coefficient: z 7.880 7.670 8.091 nd Inverting sum of squares
τSW Swashplate servomotor time constant 0.0999 0.0499 0.1499 s Inverting sum of squares
Clp Roll damping coefficient −9.595 −13.400 −5.790 nd Inverting sum of squares
Cmq Pitch damping coefficient −10.325 −14.130 −6.520 nd Inverting sum of squares
Cnr Yaw damping coefficient −6.234 −6.764 −5.659 nd Inverting sum of squares
mb Blade mass 9.6E − 4 9.031E − 4 1.017E − 3 kg Measured
Ibxx Blade mass moment of inertia: x 1.4E − 8 1.3E − 8 1.5E − 8 kg · m2 Inverting sum of squares
Ibyy Blade mass moment of inertia: y 6.3E − 7 5.3E − 7 7.3E − 7 kg · m2 Inverting sum of squares
Ibzz Blade mass moment of inertia: z 6.44E − 7 6.43E − 7 6.45E − 7 kg · m2 Inverting sum of squares
R Rotor radius 8.858E − 2 8.824E − 2 8.892E − 2 m Measured
e Nondimensional blade hinge offset 0.218 0.196 0.24 nd Inverting sum of squares
kβ Blade effect hinge spring constant 0.095 0.08 0.11 N · m∕rad Inverting sum of squares
τM Motor time constant 0.100 0.083 0.117 s Inverting sum of squares
mFB Flybar mass 0.001 9.9990E − 04 1.0010E − 03 kg Inverting sum of squares
θtwist Blade pitch twist −0.2614 −0.2963 −0.2265 rad Measured
θ0 Blade collective pitch 0.3749 0.3400 0.4098 rad Measured

nd, nondimensional.
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location primarily produce constant or low-frequency disturbances in
the z, pitch, and roll states, respectively, which affect the trim states
for the helicopter. Thus, simple filters are employed to estimate mass
and horizontal CG location as functions of the z, roll, and pitch
disturbance states. The filters, as shown in Eq. (46), isolate the low-
frequency content of the estimated uncertainty states:

fm � kpm ~x3z � kdm _~x3z
fCGx � kpCGx

~x3θ � kdCGx _~x3θ
fCGy � kpCGy

~x3ϕ � kdCGy _~x3ϕ (46)

The vertical CG location is almost always dominated by other
uncertainties, but test simulations identified a pattern that is clearer
during roll and pitch maneuvers after horizontal CG location esti-
mates have settled out. Using this pattern, the filter used for vertical
CG estimation is

fCGz � kz1fDB�_~x3ϕ ; αϕ�
_~ϕ� kz2fDB�_~x3θ ; αθ�

_~θ (47)

where fDB is a deadband function:

fDB�x;α� �
�
x; jxj ≤ α
0; jxj > α

(48)

Figure 6 shows example time-history estimations of vehicle mass
and CG location for a helicopter in hover with a discrete change in
mass properties after 1 s. The discrete change is meant to simulate a

rotorcraft performing a payload dropoff. Mass, longitudinal CG, and
lateral CG estimates all converge quickly, within 3 to 5 s. With very
little excitation during hover, the vertical CG estimate converges
slowly to within 1 mm accuracy.
To make vertical CG more observable, a roll maneuver during

forward flight is simulated, as seen in Fig. 7, with Fig. 8 showing
time-history examples of the mass property estimates. Estimation of
the vertical CG is improved, whereas all other mass property esti-
mates remain accurate. Figure 8d shows good estimation; however, it
is clear that vertical CG position is difficult to isolate, particularly
with model mismatch and measurement noise.
Although changing model parameters in flight does feed back into

the ESO, as long as the time derivative of the uncertainty ( _Δ) remains
within prescribed boundsN, the observer remains stable. This can be
ensured by setting themass andCGestimation filter gains inEqs. (46)
and (47) so the parameter estimates change slowly. For this system,
the majority of the uncertainty is due to mass and CG errors, which
results in constant uncertainty. Thus, the filter gains can be tuned
similar to a PD control loop for a step response.
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Thus, the helicopter model uncertainty due to mass and CG errors
can be driven to zero as part of the observer design process. Figure 9
shows the Lyapunov function from Eq. (35) and the time derivative
fromEq. (36) for the example forward-flight maneuver. After starting
with large initial errors, the Lyapunov function is driven to zerowith a
negative time derivative.

V. Monte Carlo Simulations

To assess the accuracy, robustness, and behavior of the mass and
CG estimation algorithm presented, Monte Carlo simulations are
performed with the nonlinear rotorcraft flight dynamics model
developed in Sec. II. Simulations use the forward-flight maneuver
described in Sec. IV while varying model and measurement errors to
capture realistic performance of the algorithm. The confidence
intervals calculated during model validation (Table 1) are used to
derive mean and standard derivations for Gaussian distributions of
each model parameter to add model mismatch to the ESO. Simula-
tions are performed for 250 cases; and for each case, model
parameters are initialized based on these distributions.
State measurements for the Monte Carlo simulations include the

measurement error from sensor noise and bias. Errors are modeled as
exponentially correlated Gaussian noise with the measurement
signals taking the form

vk � yk � nk

nk � e−Δt∕τnk−1 � ξk
�����������������������
1 − e−2Δt∕τ

p
ξk ∼ N�0; σN� (49)

where yk is the actual value, vk is the measurement value, nk is the
measurement noise, and Δt is the time between measurements. The
measurement error parameters (σN , τ) are tuned based on realistic
sensor signals from a Vicon motion-capture system for position,
attitude, and linear velocity and from low-cost microelectromechan-
ical system rate gyroscopes for angular velocity. Measurement error
parameter values for the trade study simulations are shown in Table 2.
It should be noted that, although the sensor signal errors simulated
here are based on a Vicon system, the only requirement for the ESO
framework is to provide full-state feedback. This can be achieved
through fusion of available sensors, such asGPS, IMU, altimeter, and
magnetometer.
Figure 10 shows histograms of the mass property estimations for

Monte Carlo simulations with baselinemodel error andmeasurement
noise. Mean estimates for vehicle mass, longitudinal CG position,
and lateral CG position are all accurate with small standard
deviations, as can also be seen in Table 3. Vertical CG estimates are
poor with a large mean error and standard deviation. As expected, the
cause of poor vertical CG estimation is the much smaller uncertainty
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due to vertical CG mismatch being dominated by other sources of
uncertainty.
Although the 0.5 g accuracy of themass estimation is excellent and

straightforward to understand, themillimeter accuracy of the longitu-
dinal and lateral CG estimates are difficult to place in context. Pilot
observations during experimental flight testing with the commercial
microhelicopter estimated the horizontal variation in the platformCG
to be approximately 12mm.Given this possible range, 1mmerrors in
horizontal CGs are accurate estimations representing 1.4% of the
rotor radius, whereas the possible CG range is 13%. Projecting the
algorithm’s accuracy to manned helicopters, Table 4 shows reported
longitudinal CG ranges for the UH-1, AH-64, andUH-60 helicopters
[28–30]. Even though the larger rotorcraft have considerably less CG
travel than the microcoaxial helicopter, assuming similar algorithm
performance, the ESO framework would perform adequately for the
UH-1 andUH-60.However, thevery small range of theAH-64would
be difficult. The known CG bounds could also be incorporated in the
filters, which may improve estimation accuracy.
In addition toMonteCarlo simulationswith a baselinemodel error,

two other scenarios were executed to assess the effect of model error
on algorithm performance. Given the baseline confidence intervals,
analogs with a half-model error and double-model error were consid-
ered by scaling the bounds for all parameters appropriately. Table 5
shows the helicopter mass property estimate means and standard
deviations for half-, baseline-, and double-model errors. As expected,
accuracy decreases for increasingmodel error, which can particularly
be seen by the large increases in estimate standard deviations.

Table 3 Trade studymean and standard deviations of
estimated mass properties with baseline model error and

measurement noise

Parameter Mean Standard deviation Actual value

Vehicle mass, g 59.90 2.33 60.38
rCGx , mm −0.27 1.23 0.00
rCGy , mm −0.11 1.22 0.00
rCGz , mm 9.74 5.44 4.83
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Fig. 10 Histograms of helicopter mass property estimation: a) mass, b) longitudinal center-of-gravity position, c) lateral center-of-gravity position, and
d) vertical center-of-gravity position.

Table 2 Measurement error
parameters

Signal σN Units τ, s

x 1.01E − 04 m 0.01
y 6.2E − 05 m 0.01
z 5.6E − 05 m 0.01
φ 0.02634 deg 0.01
θ 0.02434 deg 0.01
ψ 0.04126 deg 0.01
u 0.01 m∕s 0.01
v 0.01 m∕s 0.01
w 0.01 m∕s 0.01
p 5.0 deg ∕s 0.001
q 5.0 deg ∕s 0.001
r 2.5 deg ∕s 0.001
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VI. Conclusions

A new method for real-time estimation of helicopter mass
properties based on an extended state observer framework has been
developed. An important feature of the algorithm is the ability to be
proven stable even for nonlinear systems. The extended state
observermethod was applied to the estimation of vehicle mass and
center-of-gravity position for a validated nonlinear dynamicmodel of
a 60 g commercial radio-controlled coaxial helicopter. To assess the
performance of the mass estimation algorithm for this simulation
model, Monte Carlo trade studies were performed. Trade study
cases included measurement noise and varying model parameter
errors, but unmodeled dynamics were neglected. Trade study results
demonstrated the effectiveness of the new method for estimating
vehicle mass, longitudinal center of gravity, and lateral center of
gravity in the presence of expected measurement and model errors.
Estimation of the vertical center-of-gravity (CG) position was poorer
due to the limited observability of errors due to vertical CGmismatch.
The many benefits from inflight estimation of helicopter mass
and center of gravity (such as improved maintenance systems and
reduced operating costs, enhanced safety and reliability, and better
control system gain scheduling and trajectory generation) are well
known. Since rotorcraft often operate in nonlinear flight regimes,
normal missions may require a nonlinear parameter estimation
algorithm such as the ESOmethod presented here to reliably estimate
mass properties.
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