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The swerve response of fin- and spin-stabilized projectiles to control mechanism inputs is sometimes not intuitive.

This paper seeks to explain the basic parameters that govern the swerve of projectiles excited by control inputs. By

modeling the overall effect of a generalized control mechanism as a nonrolling reference frame force applied to a

point on the projectile, general expressions for swerve are obtained in terms of basic vehicle parameters. These

compact expressions are used to show thatmaximum swerve response for a fin-stabilized projectile is achieved when

the force is applied near the nose of the projectile, whereasmaximum swerve response for a spin-stabilized projectile

is achieved when the force is applied near the base of the projectile.

Nomenclature

CMQ = pitch damping aerodynamic coefficient
CNA = normal force aerodynamic coefficient
CYPA = Magnus force aerodynamic coefficient
D = projectile reference diameter
Fc = magnitude of the applied control force
g = gravity
IP = pitch moment of inertia measured around an axis

centered at the projectile center of mass and
perpendicular to the axis of symmetry

IR = roll moment of inertia measured about the projectile
axis of symmetry

m = mass of the projectile
p = projectile roll rate expressed in the body frame
~q, ~r = projectile pitch and yaw rates expressed in the no-

roll frame
R = magnitude of the swerve response
s = dimensionless arc length
~u, ~v, ~w = projectile velocity components expressed in the no-

roll frame
V = total velocity
x, y, z = projectile position in inertial space
Yc, Zc = y and z components applied control force expressed

in no-roll frame
�SLC = station line distance from the projectile mass center

to the point of application of the control force
�SLM = station line distance from the projectile mass center

to the point of application of the Magnus force
�SLP = station line distance from the projectile mass center

to the center of pressure
�FR, �FI = real and imaginary parts of the fast-mode epicyclic

eigenvalues
�SR, �SI = real and imaginary parts of the slow-mode epicyclic

eigenvalues

� = atmospheric density
�R = phase shift of the swerve response
�, �,  = projectile roll, pitch, and yaw angles
� = denotes variables expressed in the projectile no-roll

frame
0 = prime denotes variables differentiated with respect to

dimensionless arc length

I. Introduction

T HE continuing development of microelectromechanical
systems (MEMS) is pointing to the possibility of mounting

complete sensor systems onmedium- and small-caliber projectiles as
part of an actively controlled smart munition. Two important
technical challenges in achieving this goal are the development of
small, rugged, sensor suites and control mechanisms. There is
currently a flurry of activity to create innovative physical control
mechanisms. Concepts include pulse jets, squibs, synthetic jets [1–
3], drag brakes [4,5], deployable pins [6,7], moveable nose [8],
moveable canards [9], dual-spin projectiles [10,11], ram air
deflection [12], and internal translating mass [13], to name a few.

Although the preceding physical control mechanisms are very
diverse, there is a common theme between them all: each exerts a
force and/or moment on the projectile. Moreover, because
trajectories are shaped relative to ground coordinates, the forces
and moments are effectively applied in a nonrolling reference frame
and can often be modeled as constant point forces applied to the
projectile body. Although the uncontrolled dynamics of projectiles
(both fin-stabilized and spin-stabilized) have been extensively
studied in the ballistics community, issues with regard to control
response have received considerably less attention due to the lack of
practical application of control technology to spinning projectiles.
Using projectile linear theory, this paper analytically investigates
several aspects of the response of a spinning projectile to a constant
control force in the nonrolling reference frame. Simple expressions
result for the swerve-responsemagnitude and phase angle in terms of
basic physical mass properties, aerodynamic characteristics, and the
state of the air vehicle. These expressions provide a means toward
deeper understanding of the underlying factors driving the control
response of projectiles, helping smart-weapon designers to create
more capable weapon systems.

II. Simplified Analytical Swerve Solution

A six-degree-of-freedom (6-DOF) rigid-body dynamic model
used to simulate the trajectory of a projectile in atmospheric flight is
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well known [14]. Over time, however, a series of simplifications to
the dynamic equations have been identified that result in an
analytically solvable set of quasi-linear differential equations and
reasonably accurate trajectories. These equations are referred to
collectively as projectile linear theory [15]. The linear theory
dynamic equations that are applicable to this analysis are given as
Eqs. (1–6):8>><
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The projectile linear theory dynamic equations use dimensionless arc
length s as the independent variable. Arc length is related to time, as
shown in Eq. (7):

s� 1

D

Z
t

0

V dt (7)

The prime notation employed in Eqs. (1–6) signifies that the
derivatives are taken with respect to dimensionless arc length, as
opposed to time. Additionally, the linear theory equations employ a
reference frame that is aligned with the projectile axis of symmetry
but does not roll. Variables in this reference frame, which is referred
to as the no-roll frame or the fixed plane frame, are denoted with a
tilde superscript. The no-roll frame is related to the body-fixed frame
used in the traditional 6-DOF equations by a single axis rotation
about the projectile axis of symmetry.

For the purpose of examining basic swerve response due to control
inputs, both gravity and atmospheric winds are neglected. The
constant terms in the set of four coupled equations shown as Eq. (1),
referred to as the epicyclic equations, can then be described as
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Both the velocityV and the roll ratep are considered to be constant
in Eqs. (2–6) and (8–16).

The aerodynamic coefficients appearing in Eqs. (8–16) are defined
as follows [16]. The term CNA is the normal force coefficient. The
normal force acts in a direction perpendicular to the projectile axis of
symmetry and results from nonaxial wind forces caused by yawing
and pitching of the projectile. The normal force does not act at the
projectile center of gravity (c.g.), but at a point called the normal
force center of pressure (COP). The �SLP term represents the
distance between the center of gravity and the center of pressure, as
shown in Eq. (17):

�SLP � SLCOP � SLc:g: (17)

where both the center of gravity and the center of pressure are
measured from the projectile base along the projectile station line.
CYPA is the Magnus force coefficient. The Magnus force is
perpendicular to the normal force and is caused by unequal pressures
on opposite sides of the projectile resulting from viscous interaction
between the spinning surface and the surrounding atmosphere. The
Magnus force itself is generally considered to be small enough to be
neglected; however, the resulting moment must be considered. The
distance between the c.g. and the point of application of the Magnus
force (Mag) is denoted as �SLM:

�SLM � SLMag � SLc:g: (18)

where both the center of gravity and the Magnus force application
point are measured from the projectile base along the projectile
station line. The Magnus force is proportional to both spin rate and
transverse angular velocity. Therefore, in projectiles with very low
spin rates, the Magnus moment approaches zero. The term CMQ

represents the pitch-damping-moment coefficient. The pitch
damping moment is proportional to the transverse angular velocity
of the projectile. CMQ will always be negative for a stable projectile.
Thus, it has the stabilizing effect of decreasing the total transverse
angular velocity of the projectile.

Finally, the terms YC andZC represent the y and z components of a
constant control force expressed in the no-roll frame and are assumed
to act at a single point on the projectile with a moment arm �SLC

defined as

�SLC � SLCF � SLc:g: (19)

where both the center of mass and the point of application of the
control force are measured from the rear of the projectile along the
projectile axis of symmetry.

To arrive at expressions for swerve �y; z�, the solutions to
the coupled epicyclic equations (5) must first be obtained. In
the interest of brevity, this lengthy but mathematically conventional
solution was omitted here. Substituting the solutions for ~q and ~r
into the attitude equations ��;  �, then substituting the resulting
attitude expressions, along with the solutions for ~v and ~w, into
the swerve expressions results in the following expressions for
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projectile swerve:

y�s� � Cy0 � Cy1S � Cy1S2 � e
�FRs �Cyfc cos��FIS �

� Cyfs sin��FIS�� � e�SRS �Cysc cos��SIS � � Cyss sin��SIS��
(20)

z�s� � Cz0 � Cz1S � Cz2s2 � e
�FRs �Czfc cos��FIS�

� Czfs sin��FIS�� � e�SRS �Czsc cos��SIS � � Czss sin��SIS��
(21)

TheC terms in Eqs. (20) and (21) are constants containing projectile
parameters, initial conditions, and input forces. Additionally, the
downrange position of the projectile is simply

x�s� � x0 �Ds (22)

Equations (20–22) are expressed as a function of dimensionless arc
length s, as defined in Eq. (7).

To obtain a sense of the generalized swerve response of a projectile
due to an applied control force, wewill examine the case inwhich the
projectile is fired downrange with no initial pitch or yaw angle and
with no initial perturbations to the transverse lateral and angular
velocities. Assuming that the firing position is at the origin of the
inertial reference frame, this allows us to set the initial conditions of
all terms to zero, with the exception of velocity and roll rate. The
velocity and roll-rate initial conditions are denoted V0 and p0.
Additionally, as stated earlier, the effects of both gravity and
atmospheric winds are neglected here. These assumptions provide a
case in which a projectile with no applied control force displays no
swerving motion. Subsequently, the swerve response created by the
application of a control force is clear.

Examining the swerve expressions in Eqs. (20) and (21), a few
simplifications can be made. First of all, it should be noted that in a
stable projectile, the real parts of the fast- and slow-mode
eigenvalues,�FR and�SR, are always negative. Therefore, the oscilla-
tory terms in the swerve-response decay as the projectile flies
downrange and can be neglected for long-term swerve response. The
pitch damping moment is primarily associated with the oscillatory
epicyclic terms and can also be neglected, allowing CMQ in Eq. (12)
to be set to zero. Additionally, as the arc length value becomes large,
the terms containing the square of the arc length begin to dominate
the swerve-response expressions, and the terms involving Cy0, Cy1,
Cz0, and Cz1 can be neglected. These simplifications leave only the
terms involving s2 in Eqs. (20) and (21). Finally, Eq. (22) can be
solved for arc length s and substituted into Eqs. (20) and (21).

The resulting simplified swerve expressions are then functions of
range solely in terms of projectile parameters, initial velocity and
spin rate, and a control force applied in the no-roll frame. The
equations for y and z can then be combined to create an expression for
the overall magnitude of the swerve response. A compact and
informative expression for the response magnitude R results:
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where FC is the magnitude of the control force, defined as

FC �
������������������
Y2
C � Z2

C

q
(24)

The phase shift of the response, �R, is the angle between the
direction of the applied control force and the direction of the
response, as shown in Fig. 1. The phase shift can be expressed as

j

k

CF

RΦ

y

z− R

Fig. 1 Rear view of the projectile, showing position coordinate

definitions. The positive �i and x directions point into the page.

Table 1 Summary of the projectile initial conditions, physical

parameters, and aerodynamic coefficients

120-mm fin-stabilized
projectile

155-mm spin-stabilized
projectile

V0, ft=s 5479.0 2710.0
p0, rad=s 8.7000 1674.1
�, slug=ft3 2:3785 � 10�3 2:3785 � 10�3

IR, slug � ft2 2:3870 � 10�4 0.10857
IP, slug � ft2 0.17718 1.3964
m, slug 0.34461 2.9465
D, ft 0.08790 0.50853
CNA 13.350 2.6314
CYPA 0.0000 �0:9600
CMQ �5215:8 �27:700
SLc:g:, ft 1.3833 1.0627
�SLM, ft 0.0000 �0:52920
�SLP, ft �0:50079 0.71373

Fig. 2 Vertical plane swerve response of thefin-stabilized projectile at a

range of 5280 ft to a 1-lbf control input applied in the�ydirection,with 6-
DOF correlation data.
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�R � tan�1
�

2V0p0CNA�2IRCNA��SLC ��SLP� �mDCYPA�SLM�SLC�
Dp2

0CYPA�SLM�2IRCNA �mDCYPA�SLM� � 4mV2
0C

2
NA�SLP��SLC ��SLP�

�
(25)

The preceding equations provide relatively compact expressions
for the swerve magnitude and phase shift resulting from a constant
control force applied to a point on the projectile. These expressions
highlight the key parameters that drive the control response of
projectiles excited by a control-force input. However, when applying
these formulas, it is important to recall that stability of the projectile is
inherent in the assumptions used to arrive at the preceding
expressions. When parameters are varied in these expressions to
investigate the effects on swerve response, care must be taken to

ensure that the stability assumption is not violated. It also needs to be
emphasized that these equations calculate the magnitude and phase
shift of the swerve response under the assumption that the velocity
and spin rate remain constant at their initial values and, in turn, all
Mach-number-dependent quantities remain constant as well. Of

Fig. 4 Vertical plane swerve response of the spin-stabilized projectile

at a range of 5280 ft to a 1-lbf control input applied in the�y direction,
with 6-DOF correlation data.

Fig. 3 Magnitude of the swerve response of the fin-stabilized projectile

to a 1-lbf control input as a function of the distance from theprojectile c.g.

to the point of application of the force, with 6-DOF correlation data.

Fig. 6 Phase shift of the swerve response of the spin-stabilized
projectile to a 1-lbf control input as a function of the distance from the

projectile c.g. to the point of application of the force, with 6-DOF

correlation data.

Fig. 5 Magnitude of the swerve response of the spin-stabilized

projectile to a 1-lbf control input as a function of the distance from the
projectile c.g. to the point of application of the force, with 6-DOF

correlation data.
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course, this assumption becomes increasingly inaccurate as the
projectile proceeds downrange and must be periodically updated for
long-range trajectories.

III. Correlation to the Full Six-Degree-of-Freedom
Model

To demonstrate the accuracy of the simplified swerve equations, a
typical 120-mm fin-stabilized projectile and a typical 155-mm spin-
stabilized projectile were evaluated. For both projectiles, the results
obtained using Eqs. (23) and (25) were compared with results from a
fixed-step, fourth-order Runge–Kutta numerical integration of the
full 6-DOF equations of motion. The swerve response was evaluated
at a range of 5280 ft in the absence of gravity and atmospheric winds
and with no initial yaw or pitch angles. In both cases, a 1-lbf control
input was applied in the positive y direction. The control-force
moment arm�SLC in Eqs. (23) and (25) was varied from 1 ft behind
the projectile center of mass to 1 ft in front of the projectile center of
mass. The 6-DOF swerve responsewas evaluated for both projectiles
with control-forcemoment arms of�SLC ��1:0,�0:5, 0.0, 0.5, and
1.0 ft.

Table 1 summarizes the initial conditions and the resultant
aerodynamic coefficients, along with the relevant physical
parameters, for both projectiles, as used in Eqs. (23) and (25).

Figure 2 shows the swerve response of the fin-stabilized projectile
in the vertical target plane at a downrange location of x� 5280 ft,
with five 6-DOF data points included to demonstrate correlation. It
should be noted that the positive z direction points downward, in the
negative altitude direction. Figure 3 shows the magnitude of the
response as a function of control-force application point, along with
6-DOF correlation data for the fin-stabilized projectile. Note that the
magnitude of the response is dependent only upon the magnitude of
the control input, not its direction. The phase shift, which is simply
0 degwhen the force is applied in front of the COP and 180 degwhen
it is applied behind the COP, is not shown. The phase shift of the
response does not vary with the magnitude of the input and is also
independent of the direction of the input force.

Figure 4 shows the swerve response of the spin-stabilized
projectile in the vertical target plane at a downrange location of
x� 5280 ft, with five 6-DOF data points included to demonstrate
correlation. Figures 5 and 6 show the magnitude and phase shift of
the response along with 6-DOF correlation data for the spin-
stabilized projectile.

Fig. 7 Summary of the projectile response to a control input in the positive y direction in both a fin-stabilized and a spin-stabilized projectile. Magnus

moments, which act 90 deg out of phase with the angle of attack in spin-stabilized projectiles, are not shown.
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For both the fin-stabilized and spin-stabilized projectiles studied
here, the response as predicted by the simplified swerve equations is
shown to correlate very well with that predicted by the full 6-DOF
simulation at this relatively short range. Though only a very small
fraction of the total terms comprising the full linear theory swerve
expressions are preserved in the simplified version, it is clear that
those terms providing the dominant effect on the swerve response
have been retained.

IV. Effects of Individual Parameters

Figures 2–6 clearly show that the point of application of the
control force has a very large effect on both the direction and the
magnitude of the swerve response. Further, they demonstrate that the
effects are drastically different for fin- and spin-stabilized projectiles.
The simplified swerve expressions provide insight into the reasons
for this behavior. In the swerve-response magnitude and phase
expressions given as Eqs. (23) and (25), the term expressing the
distance from the center-of-pressure location to the point of
application of the control force (�SLC ��SLP) shows up repeatedly.
The practical result is that if the control force is applied at the center
of pressure,�SLC ��SLP becomes zero and the response magnitude
is at a minimum. In the case of a fin-stabilized projectile, which has
very low spin rates and negligibly small Magnus effects as a result,
the magnitude of the response goes to zero when the control force is
applied at the center of pressure.

The direction of the response is also driven by the center-of-
pressure location relative to the projectile mass center. A typical fin-
stabilized projectile will have a center-of-pressure location behind
the projectile center of mass. A control force applied in front of the
center of pressure leads to a response largely in phase with the
direction of the control force. Conversely, when the control force is
applied behind the center of pressure, the response is nearly 180 deg
out of phase with the direction of the control force.

A spin-stabilized projectile, which typically has its center of
pressure located in front of the center of mass, displays the opposite
behavior. Additionally, the Magnus moment causes a relatively
small response that is 90 deg out of phase with the direction of the
applied control force.

The physical explanation for this behavior is relatively
straightforward. Application of a control force away from the center
of gravity creates a nonzero angle of attack in the projectile. The
normal force results directly from the angle of attack, and in a stable
projectile, it will create a moment equal and opposite to the moment
caused by the control input after the initial oscillatory epicyclic
dynamics decay, creating a zero net moment on the body. The
direction of the response will be driven primarily by the sum of these
two forces.When the control force is applied at the center of pressure,
the normal force will be equal and opposite to the control force and
the response will be driven solely by the Magnus effect, which has a
nonnegligible effect only in spin-stabilized projectiles. Figure 7
graphically summarizes the effects of a control force in the positive y
direction applied at varying points on the projectile body.

To demonstrate the relatively small contribution of the Magnus
moment in a spin-stabilized projectile, the swerve magnitude and
phase shift of the spin-stabilized projectile were examined with the
Magnus force coefficient equal to the nominal value (�0:96), half the
nominal value (�0:48), and zero.

Themagnitude of the response is largely unaffected by reducing or
removing the Magnus moment, with the exception being when the
control force is applied near the projectile center of pressure. When
that is the case, the sum of the normal force and control force nears
zero and the Magnus moment becomes the dominant factor in the
response magnitude. When the Magnus moment is neglected
entirely, the magnitude of the response of the spin-stabilized
projectile becomes zerowhen the control force is applied at the center
of pressure, as is the case in a fin-stabilized projectile.

The effect of the Magnus moment becomes more apparent when
examining the phase response of the spin-stabilized projectile with
varied Magnus force coefficients, as shown in Fig. 8. The Magnus
moment acts 90 deg out of phase with the angle of attack of the

projectile. As the Magnus force coefficient is reduced, the portion of
the response that is orthogonal to the control input diminishes. With
no Magnus moment present, the response is almost completely in
phase with a force applied behind the center of pressure and is nearly
180 deg out of phase for a force applied in front of the center of
pressure.

V. Conclusions

Relatively simple, closed-form formulas for the magnitude and
phase angle of a projectile excited by a control force in terms of
fundamental projectile flight mechanic parameters were created. The
swerve-response formulas are remarkably accurate given the litany
of simplifications and the resulting compact form of the results.
These formulas clearly explain the control response differences
between fin- and spin-stabilized projectiles, including the key role
that the center of pressure plays in control-force response. It is shown
that fin-stabilized projectiles respond in phase to control-force inputs
forward of the center of pressure whereas spin-stabilized projectiles
respond out of phase to control-force inputs forward of the center of
pressure. The simple formulas reported here are expected to be useful
to smart-weapon designers in bringing to light basic parameters that
drive swerve response from different control mechanisms.
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