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Model Predictive Control of a
Direct Fire Projectile Equipped
With Canards
Launch uncertainties in uncontrolled direct fire projectiles can lead to significant impact
point dispersion, even at relatively short range. A model predictive control scheme for
direct fire projectiles is investigated to reduce impact point dispersion. The control law
depends on projectile linear theory to create an approximate linear model of the projec-
tile and quickly predict states into the future. Control inputs are based on minimization of
the error between predicted projectile states and a desired trajectory leading to the
target. Through simulation, the control law is shown to work well in reducing projectile
impact point dispersion. Parametric trade studies on an example projectile configuration
are reported that detail the effect of prediction horizon length, gain settings, model
update interval, and model step size. �DOI: 10.1115/1.2957624�
ntroduction
Direct fire projectiles are fired by line-of-sight aiming and are

red from ground based platforms, helicopters, and fixed wing
ircraft. A number of conditions can cause rounds to miss an
ntended target. These conditions include manufacturing inaccura-
ies of the gun tube, propellant, and projectile, along with variable
tmospheric conditions, firing platform motion, and aiming errors.
ith the advent of low cost, small, rugged, microelectromechani-

al systems, dramatic reduction in dispersion for direct fire pro-
ectiles equipped with a relatively inexpensive flight control sys-
em is possible. One design concept consists of a set of
ontrollable canards located near the nose of the projectile. This
aper develops a unique flight control law tailored to control of
mart projectiles through the application of model predictive con-
rol �MPC� and projectile linear theory.

In model predictive control, a dynamic model of the plant is
sed to project the state into the future and subsequently use the
stimated future state to determine control action. It has been
ound to be a practical and increasingly employed control tech-
ique �1�. Currently, model predictive control is being applied to a
ide variety of problems, spanning many different industries. Mei

t al. �2� studied vibration reduction in a tall building experiencing
ind excitation using model predictive control and linear qua-
ratic gaussian control strategies. They found that the model pre-
ictive control scheme performed well and was robust to uncer-
ainty in building stiffness. Tsai and Huang �3� used a model
eference adaptive predictive controller for a variable-frequency
il-cooling machine used in concert with dynamically complex
achine tools. Kvaternik et al. �4� developed a generalized pre-

ictive controller for tiltrotor aeroelastic stability augmentation in
irplane mode of flight. Using the model predictive control strat-
gy, significant increases in damping of aircraft body vibration
odes were achieved in a wind tunnel test. Slegers and Costello

5� applied model predictive control to a parafoil for autonomous
elivery of a payload in battlefield conditions. Burchett and Cos-
ello �6� used a simplified form of model predictive control ap-
lied to a projectile with lateral pulse jets. Their strategy was to
se projectile linear theory to map the projected impact point in
he vertical target plane and base control action on projected miss
istance and direction. The key difference between their strategy
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and that detailed here is that the control strategy employed by
Burchett and Costello calculated errors only in the target plane,
while the control strategy used here considers error along the
length of the trajectory. In addition, the pulse jet control scheme
used by Burchett and Costello is inherently discontinuous and can
only be applied at a discrete number of points. Canard control, as
applied in this paper, is continuous and is applied for the full flight
duration.

Any model predictive control scheme is dependent on the ac-
curacy of the underlying dynamic model representing the plant.
Under most flight conditions, the equations of motion for a pro-
jectile in atmospheric flight can be adequately represented by a six
degree of freedom rigid body model with externally applied aero-
dynamic forces and moments. The resulting differential equations
have been shown to provide an accurate representation of projec-
tile flight characteristics �7�, though their inherent nonlinearity
prevents direct use in model predictive control applications. How-
ever, a series of manipulations and simplifications of the equations
of motion allows closed form solution of the projectile trajectory
under restricted flight conditions. The simplified dynamic equa-
tions and their resulting solutions have become known as projec-
tile linear theory. Projectile linear theory has been extended by
various authors to handle more sophisticated aerodynamic models
�8�, asymmetric mass properties �9�, fluid payloads �10,11�, mov-
ing internal parts �12,13�, dual spin projectiles �14,15�, ascending
flight �16�, and lateral force impulses �17–20�. Aerodynamic range
reduction software used in spark range facilities utilizes projectile
linear theory in estimation of aerodynamic coefficients.

The work reported below employs model predictive control and
projectile linear theory for control of a direct fire projectile. The
basic projectile configuration under consideration is fin stabilized
and the fins are slightly canted to provide moderate roll rates
during flight. A set of controllable canards located near the nose of
the projectile is used as the control mechanism. The canards can
be directed to provide swerve forces and pitch and yaw moments
to the projectile. The control law uses an approximate closed form
solution of projectile motion to predict the states of the projectile
over a set distance known as the prediction horizon. Current and
future control actions are determined based on minimizing the
estimated error of future states. It is assumed that sensor feedback
is provided by an onboard inertial measurement unit �IMU�.

Simulation results to establish the utility of the new model pre-
dictive flight control system design methodology are generated for
an exemplar projectile. All control system calculations are per-
formed in separate subroutines to mimic the calculations, which

would be performed using a projectile onboard processor. The
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nputs to the control system subroutines are simulated sensor feed-
ack signals. The outputs of the control subroutines are the control
ommands, which, in a physical application, would be sent di-
ectly to the control actuators. In the code, these control com-
ands are applied to a fully nonlinear six degree of freedom dy-

amic model of a projectile. The nonlinear dynamic model uses
ass and inertia properties and aerodynamic coefficient lookup

ables specific to the projectile being studied. Parametric trade
tudies are conducted that consider the effect on impact point
ispersion caused by modifying various control system properties.
he control system properties examined are the cost function
eighting matrices, prediction horizon length, state estimation
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step size, and the linear model update interval.

Projectile Dynamic Model
The nonlinear trajectory simulation used in this study is a stan-

dard six degree of freedom model typically used in flight dynamic
modeling of projectiles. A schematic of the projectile configura-
tion is shown in Figs. 1 and 2. The six degrees of freedom are the
three inertial components of the position vector from an inertial
frame to the projectile mass center and the three standard Euler
orientation angles. The equations of motion are provided in Eqs.
�1�–�4� �21–23�
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� ẋ

ẏ

ż
� = �c�c� s�s�c� − c�s� c�s�c� + s�s�

c�s� s�s�s� + c�c� c�s�s� − s�c�

− s� s�c� c�c�

��u

v

w
� �1�

��̇

�̇

�̇
� = �1 s�t� c�t�

0 c� − s�

0 s�/c� c�/c�

��p

q

r
� �2�

� u̇

v̇

ẇ
� = �X/m

Y/m
Z/m

� − � 0 − r q

r 0 − p

− q p 0
��u

v

w
� �3�

�ṗ

q̇

ṙ
� = �I�−1�� L

M

N
� − � 0 − r q

r 0 − p

− q p 0
��I��p

q

r
�� �4�

n Eqs. �1� and �2�, the standard shorthand notation for trigono-
etric functions is used: sin���	s�, cos���	c�, and tan���
t�. The forces appearing in Eq. �3� contain contributions from
eight �W�, body aerodynamics �A�, and the control canards �C�.

�X

Y

Z
� = �XW

YW

ZW
� + �XA

YA

ZA
� + �XC

YC

ZC
� �5�

he dynamic equations are expressed in a body fixed reference
rame; thus all forces acting on the body are expressed in the
rojectile reference frame. The weight force is shown in Eq. �6�,

�XW

YW

ZW
� = mg�− s�

s�c�

c�c�

� �6�

hile the aerodynamic force acting at the center of pressure of the
rojectile is given by Eq. �7�.

�XA

YA

ZA
� = −

�

8
�V2D2�CX0 + CX2�v2 + w2�/V2

CNAv/V
CNAw/V

� �7�

he control forces are the aerodynamic drag forces created by the
ontrol canards in the directions perpendicular to the axis of sym-
etry of the projectile.

�XC

YC

ZC
� = −

�

8
�V2D2� 0

CY0

CZ0
� �8�

The applied moments about the projectile mass center contain
ontributions from steady aerodynamics �SA�, unsteady aerody-
amics �UA�, and the control canards �C�.

� L

M

N
� = � LSA

MSA

NSA
� + � LUA

MUA

NUA
� + � LC

MC

NC
� �9�

he moment components due to steady aerodynamic forces and
ontrol canard forces are computed with a cross product between
he distance vector from the mass center to the location of the
pecific force and the force itself. The unsteady body aerodynamic
oment provides a damping source for projectile angular motion
nd is given by Eq. �9�.
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� LUA

MUA

NUA
� =

�

8
�V2D3�

CDD +
pDCLP

2V

qDCMQ

2V

rDCMQ

2V

� �10�

The mass, mass center location, and inertial properties of the pro-
jectile are all assumed to be constant throughout the duration of
the flight. The center of pressure location and all aerodynamic
coefficients �CX0 ,CYPA ,CNA ,CDD ,CLP ,CMQ� depend on local
Mach number and are computed during simulation using linear
interpolation.

The dynamic equations given by Eqs. �1�–�4� are numerically
integrated forward in time using a fourth order, fixed step Runge–
Kutta algorithm. Costello and Anderson �7� present correlation of
this dynamic model against range data for a fin stabilized projec-
tile.

Projectile Linear Theory Trajectory Solution
The six degree of freedom rigid body projectile model shown

above consists of 12 highly nonlinear differential equations for
which a closed form solution has not been directly found. Signifi-
cant work has been performed to simplify the equations of motion
such that an accurate analytical solution can be determined. In
order to arrive at a set of analytically solvable ordinary linear
differential equations, the following assumptions and simplifica-
tions are made:

�1� Rather than employing a reference frame fixed to the pro-
jectile body, projectile linear theory uses an intermediate
reference frame, which is aligned with the projectile axis of
symmetry but does not roll. Lateral translational and rota-
tional velocity components described in this frame, known
as the no-roll frame or the fixed plane frame, are denoted
with a � superscript. Components of the linear and angular
body velocities in the fixed plane frame are computed from
body frame components of the same vector through a single
axis rotation transformation. For example, the body frame
components of the projectile mass center velocity are trans-
formed to the fixed plane by

� ũ

ṽ

w̃
� = �1 0 0

0 c� − s�

0 s� c�

��u

v

w
� �11�

�2� A change of variables is made from the velocity along the
projectile axis of symmetry, u, to the total velocity, V.
Equations �11� and �12� relate V and u and their derivatives.

V = 
u2 + v2 + w2 = 
u2 + ṽ2 + w̃2 �12�

V̇ =
uu̇ + vv̇ + wẇ

V
=

uu̇ + ṽv̇̃ + w̃ẇ̃

V
�13�

�3� Dimensionless arc length, s, is used as the independent
variable instead of time, t. Equation �13� defines dimen-
sionless arc length.

s =
1

D�0

t

Vdt �14�

Equations �14� and �15� relate time and arc length deriva-
tives of a dummy variable �. Dotted terms refer to time
derivatives and primed terms denote arc length derivatives:

�̇ = � V �� �15�

D
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�̈ = � V

D
2��� +

��V�

V
 �16�

�4� Euler pitch and yaw angles are assumed to be small so that

sin��� � �, cos��� � 1

sin��� � �, cos��� � 1 �17�
�5� Aerodynamic angles of attack are small so that

� �
w

V
, � �

v
V

�18�

�6� The projectile is mass balanced such that the center of grav-
ity lies in the rotational axis of symmetry:

Ixy = Ixz = Iyz = 0

IR = Ixx
IP = Iyy = Izz �19�

8m

61010-4 / Vol. 130, NOVEMBER 2008
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�7� Quantities V and � are large compared to �,�,v, w, q, and
r such that products of small quantities and their derivatives
are negligible.

A more detailed discussion of the development of projectile
linear theory is provided by McCoy �21�. Application of the above
stated assumptions leads to a set of coupled linear differential
equations, with the exception that the total velocity, V, the roll
rate, p, and the pitch angle, �, appear in nonlinear fashion in many
of the equations. To remedy this, the assumption is made that V
changes slowly with respect to the other variables and is thus
considered to be constant, V=V0, when it appears as a coefficient
in all dynamic equations except its own. In addition, the roll rate
and pitch angle are held constant, p= p0 and �=�0, only when they
appear in nonlinear fashion. The equation for the total velocity is
shown in Eq. �17�.

V� =
− ��D3CX0

8m
V −

DgS�0

V
�20�
The remaining 11 equations can be written as
�
ṽ�

w̃�

q̃�

r̃�

x�

y�

z�

��

��

��

p�

� = �
− A 0 0 − D 0 0 0 0 0 0 0

0 − A D 0 0 0 0 0 0 0 0

B/D C/D H − F 0 0 0 0 0 0 0

− C/D B/D F H 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

D/V0 0 0 0 0 0 0 0 0 D 0

0 D/V0 0 0 0 0 0 0 − D 0 0

0 0 0 0 0 0 0 0 0 0 D/V0

0 0 D/V0 0 0 0 0 0 0 0 0

0 0 0 D/V0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 Kc

��
ṽ

w̃

q̃

r̃

x

y

z

�

�

�

p

� +�
VF

WF

QF

RF

D

0

0

0

0

0

PF

� �21�
here

A =
��D3CNA

8m
�22�

B =
��D5CYPAp0	SLm

16IPV0
�23�

C =
��D4CNA	SL

8IP
�24�

F =
IRDp0

IPV0
�25�

H =
��D5CMQ

16IP
�26�

KC =
��D5CLP

16IR
�27�

VF =
��D3

�CNAṽ*
− V0CY0� �28�
WF =
gDC�0

V0
+

��D3

8m
�CNAw̃

*
− V0CZ0� �29�

QF =
��D3

8IP
�− w̃

*
CNA	SL −

DCYPAp0	SLmṽ*

2V0

+ V0CZ0	SLC
�30�

RF =
��D3

8IP
�− ṽ*

CNA	SL −
DCYPAp0	SLmw̃

*

2V0

− V0CY0	SLC
�31�

PF =
��V0D4CDD

8IR
�32�

Closed form solutions to the above equations can be found,
though the results are omitted here. A more detailed treatment of
the solutions to the projectile linear theory equations can be found
in Ref. �23�.

The variables CY0 and CZ0 are aerodynamic trim forces perpen-
dicular to the projectile axis of symmetry, which are created by
movement of the control canards and are treated directly as con-
trol inputs.

In reality, the total velocity, V, does not remain constant for the

duration of the flight. Therefore, the total velocity must be peri-
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dically measured throughout the trajectory and updated in the
emaining equations. The center of pressure location and the aero-
ynamic coefficients �CX0, CYPA, CNA, CDD, CLP, and CMQ�,
hich all depend on local Mach number, must also be recomputed

ach time V is updated. The effect of the length of the update
nterval on the accuracy of the model was studied by Burchett et
l. �19�.

odel Predictive Flight Control System
The model predictive controller uses the linearized model of the

ystem to propagate the states forward in time over an interval
nown as the prediction horizon �Hp� �24�. Control action is based
n comparison of the predicted states and a predetermined desired
rajectory over the prediction horizon. As the prediction step is

arched forward, so too is the prediction horizon; a process re-
erred to as the “receeding horizon principle.” The control action
t each step is determined by minimizing a quadratic cost function
efined as

J = �W − Ỹ�TQ�W − Ỹ� + UTRU �33�

he matrix W contains the desired system outputs,w, over the
ength of the prediction horizon. The desired system outputs,w, at
ach prediction step consists of the desired x, y, and z coordinates
t that time instant. These values need to be loaded into the on-
oard computer prior to projectile launch.

W =�
wk+1

wk+2

]

wk+Hp

�, wk+i = �xk+i

yk+i

zk+i
� �34�

he matrix Ỹ contains the predicted system outputs, ỹ, and the
atrix U contains the calculated system inputs, u, as follows:

Ỹ = �
ỹk+1

ỹk+2

]

ỹk+Hp

�, U =�
uk

uk+1

]

uk+Hp−1

� �35�

and R are diagonal positive semidefinite weighting matrices.
In order to develop an expression for the predicted system out-

uts over the prediction horizon, the system is first cast in stan-
ard discrete state-space form

xk+1 = A�	s�xk + B�	s�uk + F�	s�

yk = Cxk �36�

here the values within the matrices A, B, and B, depend on the
rc length step size �	s�. The projectile linear theory expressions
hown in the previous section are used to form the state-space
atrices through a 14-step loop in the control algorithm. In the
rst step, all of the states and controls are set to zero and the
olutions are evaluated over one arc length step to determine the
alues within the constant vector, F. In the next step, the first
tate, ũ, is set equal to 1, with the remaining states and controls
till equal to zero, and the expressions are reevaluated. By sub-
racting the values of the constants,F, the coefficients making up
he first column of A can be found. This process, consisting of
etting a state variable equal to 1, evaluating the linear theory
olutions, then subtracting the constant values, is repeated for
ach of the remaining ten states to fully populate the state matrix

one column at a time. The control matrix, B, is formed in
xactly the same manner with all 11 states equal to zero and the
ontrols, CY0 and CZ0, alternately set equal to 1.

The desired outputs of the system are its center of mass position

tates �x, y, and z�. The matrix C is then simply

ournal of Dynamic Systems, Measurement, and Control
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C = �0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0
� �37�

A recursive formula can be found for yk+j ,1
 j
Hp by substi-
tuting the expression for xk+j into the expression for yk+j. The
result is

yk+j = CAjxk + �
i=1

j

CAj−iBuk+i−1 + �
i=1

j

CAj−iF �38�

or in matrix form

Ỹ = KCAxk + KCABU + KCAF �39�

where

KCA = �
CA

CA2

CA3

]

CAHP

� �40�

KCAB = �
CB 0 0 . . . 0

CAB CB 0 . . . ]

CA2B CAB CB . . . 0

] ] ] � 0

CAHP−1 . . . CA2B CAB CB
� �41�

KCAF = �
CF

CAF + CF

CA2F + CAF + CF

]

CAHP−1F + ¯ + CAF + CF
� �42�

The cost function, J, then becomes

J = �W − KCAxk − KCABU − KCAF�TQ�W − KCAxk − KCABU − KCAF�

+ UTRU �43�

The minimum of the cost function is determined by selecting the
control input vector that forces the gradient of the cost function to
zero.

U = K�W − KCAxk − KCAF� �44�

where

K = �KCAB
TQKCAB + R�−1KCAB

TQ �45�

It should be noted that U contains the optimal control inputs
over the entire prediction horizon. At each arc length step, k, only
uk is used, which is the first element of U. The first element of U
is

uk = K1�W − KCAxk − KCAF� �46�

where K1 consists only of the first M rows of K. Note that M is
defined as the number of control inputs, which, in this application,
is 2 �CY0 and CZ0�.

It is assumed that full state feedback is available for use in the
control law, that is x, y, z ,�, �, � ,u, v ,w, p, q, and r are sensed
or estimated by the IMU. Furthermore, the weapon that fires the
projectile provides a desired trajectory leading to the target. At
time=0, the controller is provided with the full state of the pro-
jectile. The total velocity, V, is calculated from the projectile mass
center velocity states and set to V0 in the linear model. The linear
model is then used to propagate the remaining 11 states forward
by 	S. These values are used to populate the A, B, and F matrices,

which are sent to the MPC routine. The MPC routine calculates
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he optimal control sequence over the length of the update inter-
al. When the projectile has covered the length of the first update
nterval, as well as every subsequent update interval, the control-
er is provided with full state feedback and the process is repeated.
he control sequence calculated by the model predictive control-

er contains control inputs at increments of 	S. Linear interpola-
ion is applied to determine control inputs between increments of
S.
It is important to note that the controls resulting from the above

alculations are expressed in the fixed plane frame, as per assump-
ion number 1 in the Linear Theory section of this paper. To be
pplied to the canards, the control inputs must be converted to the
onventional body fixed reference frame.

Each time Mach number is updated in the linear model, the
atrices A, B, and F are updated as well. This, in turn, requires

pdating of the gain matrices. The size of each of these matrices,
nd hence the computational time required to calculate them, is
overned by the length of the prediction horizon. Obviously, fre-
uent updates to the linear model and a long prediction horizon
rovide greater accuracy in the predictor and more efficient con-
rol. These observations are tempered with the need to limit the
omputational demand placed on the onboard processor.

esults
To establish the utility of the model predictive controller in a

rojectile application, a 4.5 ft long fin stabilized projectile is con-
idered. The projectile has a total weight of 22.9748 lbf, a center
f gravity location of 2.5 ft from the base, and four tail mounted
tabilization fins. The roll and pitch inertias of the body are
.0057 slug ft2 and 1.35 slug ft2, respectively. A set of controllable
anards, which alter the aerodynamic forces and moments, is lo-
ated 4.25 ft from the base of the projectile.

To model uncertainty in launch conditions, which is a primary
ause of dispersion, the initial pitch and yaw rates, pitch and yaw
ngles, and body velocities are all considered to be normally dis-
ributed random numbers with means and standard deviations that
re representative of actual launch uncertainties. The values cho-
en are shown in Table 1.

The desired trajectory is chosen as that which the projectile
ould follow in the absence of uncertainty with initial conditions
f x0, y0, z0, �0, �0, and r0=0, �0=0.1 rad, =1143.38 ft /s, v0
−2.502�10−5 ft /s, w0=0.375 ft /s, p0=51.5 rad /s, and q0
−0.18 rad /s. The target location is chosen as x=6216.613 ft,
0.261 ft, and z=0.0 ft. Figure 3 shows typical dispersion results

or 50 sample trajectories with no control applied and initial con-
ition perturbations as described above. The circular error prob-
ble �CEP� shown in the figure is based on a 50% hit criterion,
hat is, the CEP is defined as the minimum radius of a circle
entered at the mean impact point and containing at least 50% of
he shot impact points. With no control applied, the CEP is 106 ft.
or reference, a second CEP is shown, which, instead of being
entered at the mean impact point, is instead centered at the target
ocation. A 50% hit criterion is still used. The second CEP has a

able 1 Initial condition uncertainty parameters for dispersion
nalysis

Initial condition Mean Standard deviation

Pitch angle ��� 0.1 rad 0.01 rad
Yaw angle ��� 0.0 rad 0.01 rad
Pitch rate �q� −0.18 rad /s 2.0 rad /s
Yaw rate �r� 0.0 rad /s 2.0 rad /s

x body velocity �u� 1143.3797 ft /s 15 ft /s
y body velocity �v� −0.00002502 ft /s 3 ft /s
z body velocity �w� 0.375346 ft /s 3 ft /s
adius of 113.5 ft.
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Figure 4 shows the dispersion results with model predictive
control applied. The prediction horizon, Hp, is chosen as 50. The
error weighting matrix, Q, is chosen to be a function of range as
follows:

Q = q�
� sk

1000
2

0 0 0

0 � sk+1

1000
2

0 0

0 0 � ]

0 0 ¯ � sk+Hp−1

1000
2 � �47�

in which q is chosen, in this case, to be 0.5. By defining Q in this
manner, the error weighting is increased quadratically as the pro-
jectile flies downrange. This prevents the tendency for the control-
ler to attempt to force the projectile onto the desired trajectory

Fig. 3 Uncontrolled dispersion „CEP=113.5 ft centered at
mean impact point…

Fig. 4 Controlled dispersion „CEP=0.02 ft centered at mean

impact point…
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mmediately after launch, leading to a large initial control input
ollowed by subsequent control inputs of nearly zero. In addition,
he control weighting matrix, R, is defined to be

R = r�
Hp 0 0 0 0

0 Hp − 1 0 0 0

0 0 � ] ]

0 0 . . . 2 0

0 0 . . . 0 1
� �48�

here r is chosen as 2.0 in this case. By defining R in this manner,
he current control value is weighted Hp times heavier than the
ontrol value at the end of the prediction horizon. This prevents
arge controls from being chosen at the beginning of an update
nterval, even if significant error is present. The model update
nterval for the case shown in Fig. 2 is 1000 arc lengths, and the
rc length step size, 	s, is 20. These parameters provide a good
aseline from which to begin examining the performance of the
odel predictive controller. Figures 5 and 6 show a typical con-

Fig. 5 Typical altitude versus range
Fig. 6 Typical cross range versus range
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trolled and uncontrolled trajectory with the model predictive con-
trol parameters set as listed above.

The model predictive controller provides a very significant re-
duction in the CEP; from 106 ft in the uncontrolled case to
0.02 ft, or less than 1 /4 of an inch, with control applied. It should
also be noted that the mean impact point is almost 0.06 ft, or
approximately 0.75 in., above the target location. In the cross-
range direction, however, the mean impact point is only 0.0085 ft
away from the target. This bias error in the z-direction can be
attributed directly to errors in the linear model used in the predic-
tor. One of the primary assumptions upon which projectile linear
theory is based is that the projectile maintains a small angle of
attack �25�. As the target is approached, the angle of attack of the
projectile is forced to a small nonzero number. Though it is not
necessarily in violation of the small angle of attack assumption, it
is enough to cause a small deviation between the trajectory pre-
dicted with the linear model and that which is arrived at by inte-
grating the full six degree of freedom nonlinear equations. This
error is demonstrated by plotting the error between the validated,
full, six degree of freedom, nonlinear trajectory, which is solved
using a fixed step fourth order Runge–Kutta method, and the lin-
ear theory trajectory solution. The linear solution is corrected to
match the nonlinear solution every 1000 arc lengths to mimic
flight control system feedback. The control input is set equal to
zero in both cases and the initial conditions are set to match those
used in creating the desired trajectory. Figure 7 shows the linear
theory error as a function of arc length in the x, y, and z directions.

Note that the error is of the same order of magnitude near the
end of the trajectory as the variation of the mean impact point in
the CEP plot. It should also be noted that the error is greatest at
the beginning and end of the flight, where the trajectory is furthest
from horizontal. At the midpoint of the trajectory, where the path
of flight is nearly flat and the projectile angle of attack is nearly
zero, the error in all three spatial directions also becomes very
close to zero.

Figure 8 shows the required control inputs for the trajectory
shown in Figs. 3 and 4. The magnitudes of the control inputs
required to achieve the shown degree of tracking are attainable for
a set of nose-mounted canards.

Great care must be taken when choosing the gain values, q and
r, such that the control values,CY0 and CZ0, never exceed approxi-
mately 1. Such large control inputs violate the small angle of
attack assumption upon which the linearized model is based. As a
result, the linear model no longer accurately approximates the true

Fig. 7 Error between linear and nonlinear trajectory solutions
nonlinear system and the controller loses its ability to accurately
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redict future states. When the system is provided with state feed-
ack from the IMU under these circumstances, there are very
arge errors and the controller subsequently attempts to choose a
arge control value to compensate. Within one to two update in-
ervals, the error becomes large enough that control saturates.

Other applications of model predictive control, such as that
iscussed by Mei et al.�2�, use an iterative scheme to set a maxi-
um control input value. In the application being discussed here,
here speed of control computation is extremely critical, iteration

s not practical. If the processor is occupied by an iterative routine
hile the projectile continues to fly downrange, control is lost. A

econd option is to simply clip the control values at the maximum
llowable value. This, too, presents problems as future controls
re calculated under the assumption that all previous controls
ere applied exactly as calculated.
The results discussed above assume perfect sensor feedback

nd precise knowledge of the mass and inertia properties of the
rojectile, both of which are unrealistic assumptions in real-world
pplications. In practice, sensors possess error created by both
ias and noise, and manufacturing inconsistencies lead to slight
ass and inertia property variations from one projectile to the

ext. The sensor inaccuracies are modeled in the simulation by
hoosing normally distributed random numbers with means of
ero and standard deviations that are representative of commonly
sed IMU sensors. A bias value is randomly chosen for each sen-
or at the start of every flight simulation and retained throughout
hat particular simulation. In addition, a noise value is randomly
hosen for each sensor every time feedback is implemented. Both
he bias and noise value are added to the sensor readings at each
pdate interval. The sensor bias and noise standard deviations
sed are summarized in Table 2. All subsequent results displayed

Fig. 8 Required control inputs for a typical trajectory

Table 2 Sensor noise and bias values

Sensor function
Bias standard

deviation
Noise standard

deviation

x and y positions 0.52 ft 0.52 ft
z position 1.18 ft 1.18 ft

x and y velocities 0.10 ft /s 0.08 ft /s
z velocity 0.16 ft /s 0.13 ft /s

oll, pitch, and yaw angles 0.3 deg 0.3 deg
Roll, pitch, and yaw rates 0.05 deg /s 0.01 deg /s
61010-8 / Vol. 130, NOVEMBER 2008
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in this paper employ sensor bias and noise applied in this way.
Additionally, manufacturing inconstancies are modeled in the

simulation by adding a normally distributed random number with
a standard deviation of 1.5% of the nominal value to the variables
representing projectile weight, inertia, and center of gravity loca-
tions. As would be the case in practice, the linear model, and
hence the control system algorithm itself, operates using the nomi-
nal values.

Sensor noise and bias become the dominant sources of error
when they are applied in this application. As the standard devia-
tion of the sensor noise remains constant throughout the projectile
flight, it no longer makes sense to define the error weighting ma-
trix as a function of projectile range. Doing so, while keeping the
value of q low enough to avoid violating the small angle of attack
assumption near the end of the trajectory, unnecessarily limits the
control action near the beginning of the trajectory. The error
weighting matrix, Q, is instead defined simply as the identity ma-
trix multiplied by the constant gain value, q.

Figure 9 shows dispersion results with mass and inertia prop-
erty uncertainty and sensor noise and bias applied. The prediction
horizon, Hp, is again 50. The error gain, q, is set to 1. The control
weighting matrix, R, is defined as shown in Eq. �48� with the gain
value, r, equal to 0.2. The update interval is 1000 arc lengths and
the arc length step size, 	s, is 20. As a direct result of the mass
and inertia property uncertainty and the sensor noise and bias, the
CEP radius is increased to 1.9 ft. Removing mass and inertia
property uncertainty, while leaving sensor noise and bias in place,
leads to virtually the same result, indicating that the control sys-
tem is not sensitive to small discrepancies in the linear model of
the projectile.

To examine the stability of the discrete time linear model used
in the control system, the eigenvalues of the system were exam-
ined over the length of the trajectory. This analysis was performed
with both mass and inertia uncertainty and sensor and noise bias
present, as well as with mass and inertia uncertainty removed. In
both cases, the magnitude of the eigenvalues remained less than or
equal to 1 over the entire trajectory, indicating a stable system.

In Fig. 10, the effects of changing both the control gain, r, and
the prediction horizon, Hp, are shown. The model update interval
is held constant at 1000 arc lengths and the arc length step size is
held constant at 20 arc lengths throughout all of the simulations
shown in Fig. 10. In addition, the error weighting matrix, Q, is
defined as the identity matrix with the error gain, q, equal to 1.
The control weighting matrix, R, is again defined as shown in Eq.
�48�. The control gain, r, is varied from 0.025 to 10 with the
prediction horizon held constant. The process is repeated four
times with values of Hp=25, Hp=50, Hp=75, and Hp=100.

As the value of r is increased, additional weight is given to the
value of the control in the cost function �Eq. �43��. This in turn
forces the magnitude of the chosen control values to be smaller,
which provides less control authority. As would be expected, Fig.
10 shows that larger values of r lead to increased dispersion.
However, there is a value of r below which the control values are
allowed to be too large, leading to violation of the small angle of
attack assumption and loss of control. This minimum value of r
varies depending on the length of the prediction horizon. In Fig.
10, the lowest attempted values of r, which resulted in a control-
lable trajectory, are shown as the first data point for each series.

It is also apparent from Fig. 10 that, for a given value of r, there
is a direct relationship between the length of the prediction hori-
zon and the amount of impact point dispersion. Allowing the con-
troller to take into account an increased number of the predicted
states, as a longer prediction horizon does, leads to more intelli-
gent control choices. It also significantly increases the amount of
computation required at each update interval, necessitating a more
expensive onboard processor.

A similar study was performed to investigate the effect of the
length of the linear model update interval on the dispersion radius.

The error weighting matrix, Q, is again the identity matrix with
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he error gain, q, set to 1. The control weighting matrix, R, is
efined as shown in Eq. �48� with the gain value, r, equal to 0.5.
he arc length step size is again 20 arc lengths. The linear model
pdate interval is varied from 100 to 2000 while holding the value
f the prediction horizon constant. As before, the process is re-
eated four times with prediction horizon values of HP=25, Hp
50, Hp=75, and Hp=100. The results are shown in Fig. 11.
Longer linear model update intervals lead to an increase in

ispersion. This increase becomes more apparent for update inter-
als greater than 1000 arc lengths. For prediction horizon lengths
f 25 and 50 arc length steps, update intervals greater than 1600
rc lengths led to a loss of control. This results from the linearized
odel deviating too far from the true nonlinear system. Upon

Fig. 9 Controlled dispersion with
=2.1 ft centered at mean impact poin

ig. 10 Controlled dispersion results as the control gain, r, is

aried
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update, the error becomes very large and a large control is chosen
to compensate, which in turn violates the small angle of attack
assumption and causes further error in the linear model. Reducing
the error gain, q, or increasing the control gain, r, would prevent
this scenario from occurring. However, the tradeoff would be a
reduction in control authority and an increase in dispersion.

The final study investigates the effects of the length of the step
size, 	s, used by the controller to propagate the linear model
forward. The prediction horizon is held constant at 50 steps and
the error weighting matrix is the identity matrix with the gain, q,
equal to 1. The control weighting matrix is defined, as shown in
Eq. �48�. Four values for the arc length step size �	s=5, 	s=10,

sor bias and noise applied „CEP

Fig. 11 Controlled dispersion results as the linear model up-
sen
date interval is varied
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s=20, and 	s=40� are used while the control gain, r, is varied
ver the range, which provided suitable control inputs for each
tep size. The results can be seen in Fig. 12.

As with any discrete linear model, the length of the step size
as no effect on the accuracy of the model itself. However, as
videnced by Fig. 12, the length of the arc length step size does
ave an effect on the overall accuracy of the controller. This re-
ults from an interplay between two competing effects. The pre-
iction horizon length is measured in the number of steps into the
uture that are used in the calculation of the optimal control.
herefore, for a given prediction horizon length, increasing the
rc length step size allows the predictor to take into account state
alues farther into the future. However, control values are only
alculated at each step increment, with control values between
alculation steps derived from linear interpolation. A large step
ize can therefore lead to a decrease in resolution of the controller.
or arc length step sizes of 5, 10, and 20, these effects do little
ore than change the acceptable range of gains, shifting the lines

o the right of Fig. 12 for increasing values of 	s. However, at
s=40, the controller becomes unable to provide the necessary
mount of oscillation and dispersion is increased dramatically.

These parametric trade studies lead to a general set of guide-
ines for use in tuning an unconstrained model predictive control-
er in a projectile application. Arc length calculation step size,

odel update interval, and prediction horizon length all contribute
o the amount of processing power required to run the control
ystem in real time. The arc length step size should be as large as
ossible without losing controller precision. This study showed 20
rc lengths to be a good standard. Similarly, because of the large
umber of calculations required to create the control matrices, the
odel update interval should only be updated often enough to

revent the linear model from degrading too significantly. Previ-
us study has shown the ideal value to be 1000 arc lengths and
hat value was confirmed here. Prediction horizons of 75 and 100
rc lengths provided only small improvements over a prediction
orizon of 50 arc lengths, though reducing it to 25 arc lengths
aused a dramatic loss of performance. A prediction horizon of 50
rc lengths would therefore be the minimum recommended value,
hough longer prediction horizons should be considered if the on-
oard processor is capable of handling the increased computa-
ional load. The control system gains should be the final consid-
ration. As long as sensor noise proves to be the overriding source

ig. 12 Controlled dispersion results as the arc length step
ize is varied
f error, the error weighting matrix should remain as the simple
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identity matrix and, for simplicity, the error gain, q, can remain
equal to 1. This leaves only the control gain, r, to be tuned for a
specific projectile configuration. Through simulation, r should be
chosen such that the control inputs avoid saturation, but control is
not overly limited. In the case of the example projectile shown
here, that value proved to be approximately 0.2.

Conclusions
This paper develops a method for applying model predictive

control, a proven and effective control technique, to a smart pro-
jectile application. The control law is shown to dramatically re-
duce the impact point dispersion caused by launch disturbances.
The method uses full state feedback to create a linearized model
of the projectile and quickly predict the future states of the sys-
tem. These calculations can be performed by a relatively inexpen-
sive onboard processor. As the predicted states depend on the
states provided by the feedback loop, sensor accuracy is very
important to the performance of the system and was shown here to
be the limiting factor in dispersion reduction.

Considerable opportunities exist for the control system designer
to tune the model predictive controller based on the desired appli-
cation. It was shown that the length of the prediction horizon has
a considerable effect on the dispersion radius, with a longer pre-
diction horizon leading to a decrease in dispersion. However, a
longer prediction horizon increases the size of the matrices used in
the control calculation, which subsequently necessitates an in-
crease in the processing power required to perform control calcu-
lations in a sufficiently short period of time. Shorter linear model
update intervals lead to a decrease in dispersion as well, but with
a similar increase in the amount of onboard computation required.
The length of the arc length step size was shown to have little
effect on dispersion as long as it remained below 20 arc lengths.
Control and error gains should be adjusted to allow sufficient
control authority without violating any of the assumptions upon
which linear theory is based. No constraints are built into the
controller to limit the size of the control inputs, so the control
system designer should run a series of simulations prior to launch-
ing a projectile to ensure that the control and error gains are prop-
erly adjusted.

Though only a single direct fire projectile configuration was
studied here, projectile linear theory can be applied to wide range
of both direct and indirect fire projectiles, provided that they do
not violate any of the assumptions detailed here in the section on
Projectile Linear Theory. In addition, a few minor modifications
can be made to the assumptions stated here, resulting in a related
set of equations known as modified projectile linear theory, which
allow a significant relaxation of the flat-fire assumption. With this
in mind, model predictive control has the potential to be a pow-
erful and widely applied control method in the smart munitions
industry.

Nomenclature
�curr  air density
CNA  normal force aerodynamic coefficient
CMQ  pitch rate damping moment aerodynamic

coefficient
CX0  Aerodynamic drag coefficient in direction par-

allel to projectile motion
CY0 ,CZ0  aerodynamic trim coefficients perpendicular to

projectile axis of symmetry
CDD  roll moment from fin cant

CYPA  magnus force
CLP  roll damping moment

D  projectile characteristic diameter
IP , IR  projectile precessional and rotational inertia

m  projectile mass
p, q, r  angular velocity vector components expressed
in the body fixed reference frame

Transactions of the ASME

 Terms of Use: http://asme.org/terms



R

J

Downloaded Fr
� ,� ,�  Euler yaw, pitch, and roll angles
	SL  stationline distance from the projectile center

of pressure location to the CG
	SLM  stationline distance from the projectile magnus

force location to the CG
	SLC  stationline distance from the control canard

location to the CG
u ,v ,w  translation velocity components of the projec-

tile center of mass resolved in the body fixed
reference frame

x ,y ,z  position vector components of the projectile
mass center expressed in the inertial reference
frame

V  magnitude of the mass center velocity
L ,M ,N  total external applied moment on the rocket

about the mass center expressed in the rocket
reference frame

X ,Y ,Z  total external applied force on the rocket ex-
pressed in the rocket reference frame

Hp  prediction horizon used in model predictive
controller

s  dimensionless arc length
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