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Advances in guided airdrop technology including guidance, navigation, and control algorithms, novel 
control mechanisms and wind sensing algorithms have led to significant improvements over unguided 
airdrop systems. Guided systems are autonomously controlled with an embedded microprocessor using 
position and velocity feedback. While capable of highly accurate landing, these systems struggle to 
overcome deviations from expected flight dynamics due to canopy damage or cargo imbalance, complex 
terrain at the drop zone, and loss of sensor feedback. Human operators are intelligent, highly adaptive, 
and can innately judge the flight vehicle and environment to steer the vehicle to the desired impact 
point provided sufficient information. This work experimentally explores operators’ abilities to accurately 
land an airdrop system using different sensing modalities. Human operator landing results are compared 
with a state of the art fully autonomous airdrop system. Across the methods analyzed, human operators 
attained up to a 40% increase in landing accuracy over the fully autonomous control algorithm.

© 2018 Elsevier Masson SAS. All rights reserved.
1. Introduction

Airdrop systems are generally categorized into guided or un-
guided systems. Unguided systems are typically released from low 
altitudes and descend to the ground without feedback or control. 
Landing accuracy of these systems is dependent on the drop alti-
tude, the quality of atmospheric wind estimates, and the computed 
air release point [1,2]. Guided airdrop systems use either steerable 
round chutes [3,4] or ram air parafoils combined with sensor suites 
to provide controllability and observability, respectively. Early au-
tonomous systems used directional antennas as a form of beacon 
guidance [5–8]. After the deployment of the original 24 satel-
lites forming the backbone of the Global Positioning System (GPS), 
more advanced algorithms capitalized on the rich data available 
for feedback [9–15]. GPS feedback allows the autonomous system 
to estimate and reject the atmospheric winds making them more 
accurate than unguided systems and protecting the carrier aircraft 
by enabling high altitude release points. The primary disadvantage 
to these systems is the greater cost due to the need for sensors, 
actuators, and computing capabilities.
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Both unguided and guided airdrop methods require no human 
intervention once released from the carrier aircraft. While this is 
a benefit in many active battlefield scenarios, any unaccounted 
disturbances or changes in expected system performance can dras-
tically reduce system landing accuracy. For guided systems, such 
changes include deviations in the flight dynamics from the model 
(not uncommon for flexible systems), loss or denial of GPS feed-
back, low altitude wind shears, or requirements for obstacle avoid-
ance due to complex terrain at the drop zone (DZ). While some of 
these problems are just recently being addressed in autonomy (see 
[16] for drop zone terrain considerations and [17] for overcom-
ing wind shears), a middle ground between guided and unguided 
systems exists which incorporates a human operator to steer the 
airdrop system to the desired impact point (IP). The benefits of 
this type of approach stem directly from a human operator’s innate 
ability to adapt to changing situations, employ forward path pre-
diction, and be unconstrained from often rigid, pre-defined control 
logic. In addition, this human-in-the-loop approach mimics how 
current military drone operations are conducted in the field to-
day.

Significant work exists in the literature on human-in-the-loop 
control schemes between humans and robotic systems. Research 
primarily focuses on ground based platforms with examples rang-
ing from inner loop autonomous stability constraints for legged 
robots [18,19] to haptic feedback systems [20–22]. For aerial ve-
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hicles, most initial flight testing of autonomous systems have a 
human pilot ready to take over control if an error occurs. An 
available human represents an intelligent, highly adaptive control 
system to ensure the system can still be recovered. An initial study 
into the benefits of human control of guided airdrop systems was 
tested by Mayer et al. [23,24] in the 1980’s. Since the implemen-
tation of GPS, human-in-the-loop control strategies in aerospace 
have focused on fixed-wing vehicles [25–29] or the control of 
multiple platforms by a single operator [30,31] due to a docu-
ment issued by the Office of the Secretary of Defense outlining 
future goals of unmanned aerial vehicles [32]. The visual feedback 
methods studied here combine elements common to remote pi-
loting of fixed wing UAVs which are prevalent in both military 
and hobbyist communities. Fixed wing displays are commonly de-
signed to mimic a cockpit experience using video feedback with 
overlaid pitch, roll, heading, altitude and other indicators includ-
ing projected path estimates [25–29]. However, there are signifi-
cant differences between the dynamics and control of fixed wing 
aircraft and guided parafoil systems that limit the transition of 
previously studied displays to this work. First, these vehicles lack 
thrust generation which limits the forward airspeed while having 
relatively constant descent rates (common ram air parafoils have 
a glide slope of 3 to 1). Low vehicle airspeed makes the flight 
trajectory highly dependent on the atmospheric wind conditions. 
Minimal control authority of the descent rate causes the terminal 
phase of landing to happen quickly and provides operators only 
one opportunity to line up for landing. Additionally, these systems 
have relatively poor feedback (typically just GPS) which prevents 
many of the common indicators like bank angle from being uti-
lized.

This work seeks to explore the impact of integrating a human 
pilot into typically autonomous operations. The capabilities of sev-
eral human-in-the-loop control strategies for guided parafoil sys-
tems are compared with a state of the art autonomous algorithm. 
Operators’ abilities are measured through statistical analysis of ex-
perimental flight test results conducted on a small-scale airdrop 
system. To study the capabilities of a human operator and specifi-
cally what type of system interface is most useful, a series of sens-
ing and control modalities are explored. First, an on-site method 
was tested where the operator is located near the IP and looks 
upward to visually track the motion of the airdrop system dur-
ing gliding descent. This method mimics how conventional remote 
control (CRC) aerial vehicles are steered in the hobby community 
and provides a baseline for other concepts. The remaining meth-
ods use wireless communication to transmit vehicle data and/or a 
video stream to a ground station computer. These three methods 
are termed first person view (FPV) video stream, live map (LM) in-
terface, and virtual cockpit display (VCD). The FPV method uses a 
camera rigidly mounted to the nose of the payload to provide a 
first person view from the aerial vehicle. The goal is to replicate 
a skydiver’s perspective and allow the ground based human oper-
ator to make decisions as if they were physically flying the aerial 
vehicle. The LM interface uses navigation estimates to generate a 
bird’s eye view map of the DZ with the airdrop system, heading 
direction, and wind estimates displayed. This method provides the 
user with a clear understanding of the orientation and position of 
the vehicle as if flown from above instead of below as in the CRC 
method. The last method combines the FPV and LM methods to 
create a virtual cockpit display. This method focuses on fusing the 
independent data streams together in a comprehensive display to 
allow operators to make the most informed control decisions. Be-
tween these four methods which consider both on-site and remote 
pilot methods, this work addresses the primary means and ways 
in which a human operator can remotely control a conventionally 
autonomous airdrop system.
Fig. 1. Small-scale airdrop system used in experimental testing.

2. Experimental setup

To conduct experimental results on the proposed methods, 
a small-scale remote control airdrop system is employed. The pay-
load is equipped with an autopilot, servo motors, electric brushless 
motor, speed controller, battery, GoPro camera and wireless video 
transmitter. Fig. 1 shows a close up of the payload with associ-
ated hardware along with a picture during flight. The autopilot 
runs a PIC32MX family microcontroller and contains a sensor suite 
including a barometric altimeter and GPS receiver. Flight data is 
stored in EEPROM onboard memory and transmitted down to a 
base station computer via a wireless link for use in the feed-
back displays. Lateral control through trailing edge deflection of 
the canopy is provided by two high torque servo motors. Power is 
provided to payload electronics from a 6000 mA h lithium poly-
mer battery, sufficient to power the system over two complete 
flights. The rear mounted motor and propeller are included to fa-
cilitate experimental testing using a ‘simulated drop’ method. For 
this, the system is hand launched from ground level, flown under 
power to gain altitude until a desired ‘release’ altitude is reached 
at which time the motor is turned off and the human operator or 
comparator autonomous algorithm is given control of the vehicle. 
Release altitude was chosen to be 400 m which allowed approxi-
mately 3 minutes of flight per drop. A high torque servo winch is 
installed to decrease the canopy incidence angle during powered 
flight to prevent stall. Lastly, the GoPro camera is mounted at the 
front of the payload, angled down to provide a view of the space 
in front and below the system. Recorded video is transmitted to 
the base station computer to provide a real time video feed from 
the airdrop system.

Control of the vehicle for powered climb and gliding descent 
is provided through a 2.4 GHz radio controller commonly used 
in hobby communities. The 7-channel controller gives the opera-
tor control over thrust, canopy incidence angle, low to high turn 
rate settings, symmetric and asymmetric brakes, data logging and 
a switch to engage the fully autonomous mode. The configuration 
of the controller is shown in Fig. 2. During descent, the pilot only 
uses the right stick to control asymmetric and symmetric brake 
deflection which affects the lateral and longitudinal dynamics, re-
spectively. For all tests, human operators were given the following 
objectives:

1. Attempt to land as close to the target as possible;
2. Ensure payload survivability by maintaining level flight with 

the system flying directly into the wind just prior to impact; 
and

3. Avoid collision of the airdrop system with any obstacles near 
the DZ.
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Fig. 2. Human operator interface for control of a guided airdrop system.

These objectives prioritize both landing accuracy and payload 
survivability. By landing directly into the wind during straight and 
level flight, the ground speed of the airdrop system is minimized 
which reduces the kinetic energy prior to impact. While highly 
aerobatic maneuvers close to the IP may reduce landing error, sig-
nificant damage can occur to the payload. Note that while the 
human operator is able to actively attempt to satisfy objective 3 
based upon feedback information received, the fully autonomous 
system is blind to any potential obstacle near the IP.

It is expected that several key elements will factor into the pi-
lots ability to accomplish the mission objectives listed above. They 
are:

1. Form and fidelity of the feedback method;
2. Experience of the operator, both in remote control aircraft and 

the field of guided parafoil systems; and
3. Atmospheric weather condition.

This highlights the multivariable nature of the problem being 
addressed here. The first point is the primary focus of analysis 
in this paper. The experience of the operators will impact their 
decision making as less trained operators will be more prone to 
making poor decisions. Operators’ skill level is ranked from novice 
to expert based on experience in radio control aerial systems or 
guided parafoil systems in general and amount of previous flight 
time using the small-scale experimental vehicle. While variation 
in skill amongst operators may skew landing accuracy statistics, 
the goal is to understand both quantitative and qualitative aspects 
of a successful human interface. Last, atmospheric conditions are 
a major concern for both human operators and autonomous al-
gorithms alike and by concurrently testing both, the influence of 
atmospheric winds on relative performance can be minimized.

3. Feedback methods for human-in-the-loop control

With a focus on identifying key aspects of feedback to a ground 
based human operator, four methods are analyzed ranging from 
visually spotting the aerial system in the sky directly to multi-
element digital displays. Each of the four feedback methods for 
human-in-the-loop control and the baseline fully autonomous al-
gorithm are presented in detail in the following sections.

3.1. Fully autonomous

A modern, GPS based airdrop guidance, navigation, and con-
trol (GNC) algorithm is used as a comparator to human-in-the-loop 
control methods presented in this work. A lateral steering con-
troller based on the work in [33] is used and a brief summary 
of the algorithm is presented here as a reference.

The navigation algorithm filters GPS and barometric altimeter 
measurements using standard and extended Kalman filters to gen-
erate accurate estimates of the airdrop system position, velocity, 
heading, heading rate and horizontal components of the atmo-
spheric winds. To accurately initialize the navigation algorithm, 
a short open loop initialization phase is used to generate an esti-
mate of the navigation state vector to ensure accurate convergence 
of the observer [34]. The guidance algorithm uses the navigation 
estimates to generate desired paths which maintain general prox-
imity to the target while at altitude and end at the IP when there 
is expected to be zero altitude. Path planning in the guidance al-
gorithm is broken into 4 sections based on the current goals of 
the airdrop system. The system starts in an initialization period re-
quired by the navigation algorithm and then actively loiters in the 
airspace above the DZ. When the current altitude is equal to the 
altitude required to reach the IP (based on distance, heading, alti-
tude, and wind conditions), the system enters the approach phase 
where it heads to the target pointed directly into the estimated 
wind direction. Just before ground impact, the system transitions 
into the flare stage where both trailing edge brakes are actuated 
to maximum deflection in order to stall the canopy in order min-
imize the flight speed and hence the kinetic energy of the system 
at impact.

The lateral control algorithm implemented here uses the error 
between the desired path (given as a heading angle to track) and 
estimated heading to calculate the control command. This algo-
rithm uses a nonlinear proportional and integral controller. The 
nonlinear proportional element tracks the desired heading and 
minimizes control input for small heading errors to prevent chat-
tering while tracking a straight path. The integral controller is used 
to identify and overcome potential turn biases in the airdrop sys-
tem which can be caused by uneven weight distribution or stretch-
ing of the rigging lines.

3.2. Conventional remote control

The conventional remote control (CRC) method uses a ground 
based human operator’s visual recognition as a feedback signal to 
base control decisions. The operator is located near the IP in order 
to have a clear view of the target and surrounding airspace. An 
example of a human operator controlling the small-scale airdrop 
system during approach and landing is presented as a triptych in 
Fig. 3. This method capitalizes on human operators’ innate ability 
to mentally apply a form of model predictive control by extrapolat-
ing the current position, orientation and velocity into a predicted 
path over a finite horizon. These visual cues which include ground 
wind sensing from a small wind streamer at the IP inform the op-
erator how the system needs to be perturbed in order to steer 
the airdrop system to the target. This simple method replicates 
how conventional remote control operators fly drones in the hobby 
community and can be extended into airdrop operations by train-
ing ground crew that are present at the DZ to collect delivered 
supplies.

3.3. First person view

The first person view (FPV) video stream method simulates the 
ground based human operator controlling the airdrop system as if 
they were flying the system as a skydiver. Video feedback is pro-
vided by a GoPro camera with a fisheye lens which is mounted 
rigidly to the nose of the payload. This camera was chosen based 
on its light weight design and wide angle lens to provide the great-
est field of view to the operator. A 5.8 GHz wireless transmitter 
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Fig. 3. Triptych showing the final landing sequence of a parafoil and payload system controlled by a ground based human operator using conventional remote control where 
t1 < t2 < t3.
Fig. 4. Human operator using a computer display feedback method to inform control 
decisions.

sent onboard GoPro footage to a base station laptop. The IP was 
clearly designated with a 4.5 m “+” symbol made of polyester 
cloth and colored to provide high contrast against the ground 
marked the target.

Onboard video is provided to the operator using a high lumen, 
anti-glare display, exemplified in Fig. 4. The strong benefit of a dig-
ital display is that the operator is no longer required to be located 
at the DZ and could be located off site given proper communi-
cation connection and security protocols. This feedback method 
provides the operator with a bird’s eye view of the DZ while at 
high altitudes and detailed information on potential landing haz-
ards as the vehicle drops altitude. In conjunction with the video 
stream, estimates from the aforementioned navigation algorithm 
are provided in a tabulated form. Included parameters were loca-
tion with respect to the IP, altitude, horizontal components of the 
wind, and descent rate. These estimates provided extra cues for 
the operator to help overcome potential challenges such as depth 
perception and high altitude terrain based navigation. As a note, 
transmitted video quality has sufficient pixel quality to identify the 
“+” IP marker from approximately 150 m and below but does not 
provide sufficient resolution to clearly identify the wind streamer 
direction seen in Fig. 3. Above this altitude, the operator must use 
terrain knowledge or tabulated data to steer the vehicle while at 
higher altitudes.

3.4. Live map

The goal of the live map (LM) method is to mimic common 
flight planning software used in the field of airdrop systems, most 
notably the FalconView software package [35]. This software is 
used for mission planning and can track aerial vehicles provided 
GPS data. The human operators are presented the digital interface 
in Fig. 5 which updates at 4 Hz on which to base control deci-
sions. This method integrates navigation estimates into an aerial 
map to generate an accurate representation of the DZ and the 
vehicle movement. Current heading and course direction are dis-
played along with altitude, horizontal distance from the target, 
atmospheric wind magnitude and direction. Markers were added 
to the display at the start of flight testing each day to account for 
local obstacles that needed to be avoided while attempting to land 
at the IP. Additionally, breadcrumbs are placed at 1 Hz to show the 
recent trajectory of the vehicle.

3.5. Virtual cockpit display

The virtual cockpit display (VCD) method was designed as a 
user interface that blends both LM and FPV features in order to 
provide the most information to the human operator. With both 
a bird’s eye map of the DZ and a live FPV video stream from the 
Fig. 5. Live map display showing system location, orientation, and relevant estimates.
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Fig. 6. Virtual cockpit display interface with both first person view and live map components.
payload, the human operator has the most information on the po-
sition and attitude of the airdrop system on which to base control 
decisions. A graphic of the display is shown in Fig. 6 with the LM 
on the left, FPV video stream on the right, and estimates from 
the navigation algorithm along the top. Included parameters were 
height above ground, horizontal distance to ground, wind mag-
nitude and direction, descent rate, forward airspeed, and altitude 
margin. This final parameter is an estimate of the altitude that the 
vehicle would have over the target if it immediately flew from its 
current location to the IP. The remaining altitude, or altitude mar-
gin, provides the operator with the amount of altitude needed to 
be lost before flying to the target.

4. Experimental results

Flight test operations were conducted in flat desert terrain in 
Eloy, AZ and in a wooded clearing in the rolling hills outside of 
Atlanta, GA. Operations were conducted on cloudless days to pro-
vide operators clear views to and from the small scale airdrop 
system. All testing was conducted in an alternating fashion where 
a human operator would control the system for one drop, and the 
autonomous algorithm would control the next to ensured similar 
weather conditions across the data sets to accurately remove the 
impact of atmospheric conditions on operator performance in com-
parison to the autonomous algorithms. Landing capabilities of the 
operator are judge by both statistical accuracy metrics and through 
user feedback. From the results of several operators, indicators 
and display elements are identified which are key to an operator 
accomplishing the mission specifications. Landing accuracy is pre-
sented using landing dispersion plots with the axes rotated such 
that the vertical axis is aligned with the wind direction from each 
flight (denoted the Downwind direction). Statistics on landing ac-
curacy are generated using the circular error probably (CEP) which 
is standard practice in the field of precision airdrop systems. The 
50% (90%) CEP value is defined as the radius of a circle, centered 
at the IP, which contains 50% (90%) of the landing points. The 50% 
CEP is often referred to as the median miss and the 90% CEP char-
acterizes an upper bound on system accuracy. A smaller CEP value 
indicates more landings closer to the target and a more accurate 
method.

Note that all methods required the navigation algorithm from 
the fully autonomous system to provide estimates to the opera-
tor and data logging purposes. This required the vehicle to run 
the open loop initialization procedure before manual control was 
passed to the operator.
Fig. 7. Aggregate landing dispersion of a fully autonomous airdrop system.

4.1. Fully autonomous

The results of an autonomous system are presented to create 
a baseline to analyze the potential benefits from human-in-the-
loop control of guided airdrop systems. A total of 142 autonomous 
flights were conducted across testing of all human-in-the-loop 
methodologies. Atmospheric winds varied substantially and ranged 
from benign to gusty conditions in which turbulent winds reached 
over 6 m/s (approximately 80% of the vehicle airspeed). The land-
ing dispersion is presented in Fig. 7 along with circles indicating 
50% and 90% CEP.

Landing points show a relatively uniform distribution around 
the IP and resulted in a 50% CEP of 18.7 m and a 90% CEP 
of 38.0 m. While these indicate impressive landing accuracy val-
ues, this system was blind to objects around the IP, primarily the 
ground station where a vehicle was parked and human operators 
were located. Several autonomous airdrops required human inter-
vention at landing to ensure the experimental system didn’t collide 
with the ground station. All other drops landed in wings level 
flight and almost all flights had a proper flare to ensure smooth 
landing. Several flights exhibited incorrect flare altitude due to 
drift in the barometric altimeter causing the system to land at the 
IP harder than normally observed.

In order to perform an equivalent comparison between the con-
ventional autonomous system and human operators, statistics from 
individual flight test campaigns are used. While it is the goal to 
test system performance in a variety of atmospheric wind condi-
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Table 1
Landing statistics of all autonomous and human-in-the-loop methods.

Feedback 
method

Human operator Autonomous system Accuracy improvement 
achieved by human 
operator in 50% CEP50% CEP (m) 90% CEP (m) 50% CEP (m) 90% CEP (m)

CRC 10.4 21.0 17.7 38.0 41%
FPV 16.4 46.0 16.5 31.6 0%
LM 19.2 43.2 25.7 57.4 25%
VCD 16.9 37.7 21.6 45.3 22%
Fig. 8. Landing dispersion of four human operators controlling a small scale airdrop 
system using the conventional remote control method.

tions, certain flight test operations experienced calmer or gustier 
conditions than others. Typically, the landing accuracy for au-
tonomous systems decrease in more intense and variable wind 
fields as it poses a greater disturbance to the control system. 
The same is expected for the human-in-the-loop control of guided 
airdrop systems. Hence, the concurrently tested conventional au-
tonomous system landing statistics are used as a baseline for each 
operator feedback method since flight test operations are con-
ducted in an alternating format as described in Section 3. A list 
of all individual landing accuracy statistics from flight test opera-
tions is presented in Table 1.

4.2. Conventional remote control

The ability of an operator to accurately guide a parafoil and 
payload system to the target is studied in this section. Four op-
erators were used, with skill levels intermediate to advanced, to 
directly steer the vehicle to the IP. 52 flights were conducted be-
tween the four pilots and the landing dispersion is presented in 
Fig. 8 where each operator is denoted by a different marker and 
aggregate CEP circles are presented.

Individual human operator 50% CEP values ranged from 9.1 m 
to 10.8 m; the aggregate 50% CEP was 10.4 m and the 90% CEP 
was 21.0 m. This method exhibited a drastic 41% improvement in 
accuracy in comparison to the autonomous system. The landing 
dispersion was centered on the target indicating that the human 
operators were able to consistently land the system in the region 
of the target. The CRC method is both an accurate and simple 
method as it relies directly on the operators direct sensing of the 
airdrop system in the airspace above the DZ.

Additional information on the CRC method is based upon qual-
itative feedback received by the operators. A concise summary of 
responses indicated the following.
1. The transition from loitering near the target to final approach 
was difficult to properly gauge.

2. Offset position of the operator from the IP caused depth per-
ception issues.

3. Desired landing direction was easy to determine as the op-
erator was physically buffeted by the same winds hitting the 
airdrop system at low altitudes.

These observations bring to light that the primary driver of oper-
ator uncertainty in the CRC method is based on perception of the 
aerial vehicle, not wind estimation which is the primary driver of 
error in autonomous systems. The human operator is robust (in the 
sense of conventional controller design) to state estimation error 
since operators had low confidence in the accuracy of their loca-
tion estimates but were still able to guide the system to the target. 
Only ground wind information was easily identifiable as the oper-
ator was physically standing at the DZ. This information allowed 
operators to easily align the vehicle with the ground wind direc-
tion to slow the vehicle ground speed prior to landing. Vision of 
the system and environment allowed operators to consistently land 
in level flight with a properly timed flare maneuver. Operators also 
indicated that obstacle avoidance near the target was not difficult 
to achieve. Human control performs obstacle avoidance in a very 
simple manner while it is very computationally expensive to im-
plement in guidance logic.

This method could be further improved if an operator visually 
spotting the system was also provided with onboard estimates to 
further enhance their knowledge of the system in space. Onboard 
state estimates could easily be conveyed to the operator via a small 
display or audibly via a ground station interfacing with the pay-
load. The following methods expand upon this idea of onboard 
feedback to create human-in-the-loop control schemes that do not 
require the operator to physically be at the DZ.

4.3. First person view

Experiments using the front mounted camera for video feed-
back to the ground station were conducted by three operators with 
general skill levels between intermediate and advanced. None of 
the operators had used this method significantly prior to exper-
imental testing. Landing dispersion plots of 43 total flights are 
presented in Fig. 9. Combining the results of all three operators, 
the FPV method exhibited a 50% CEP of 16.4 m and a 90% CEP 
of 46.0 m. Operators performed nearly equivalently to the con-
currently tested autonomous algorithm which had a 50% CEP of 
16.5 m and 90% CEP of 31.6 m.

Using this method, operators tended to miss the target short 
indicating that they were not as capable at constructing a set 
of commands to accurately reach the target. Operators using FPV 
feedback successfully avoided hazards near the IP including the 
test vehicle and base station, large shrubs, and cacti. Qualities of 
this display that helped human operators maintain autonomous 
level accuracy is summarized below based on operator feedback.
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Fig. 9. Landing dispersion of three human operators using first person view video 
feedback.

1. The FPV video stream provided a clear understanding of the 
DZ when at altitude including the ability to identify and track 
major obstacles that should be avoided.

2. Users were not confident in their ability to estimate wind ve-
locity from the video alone unless the magnitude was near the 
parafoil airspeed. Altitude was also difficult to estimate due to 
lack of depth perception.

3. Loss of the IP from the camera field of view had potential 
to cause disorientation after exiting a turn if no other clear 
marker (e.g. a hazard) was easily recognizable.

4. It was difficult for the human operators to mentally recon-
cile the FPV video stream with tabulated onboard estimates. In 
particular, the camera view is relative to the orientation of the 
payload while the onboard estimates were in inertial space.

The use of video feedback as the main element of feedback pro-
vided the operator with a great understanding of the airspace 
but did not sufficiently present data in a way to improve accu-
racy over the autonomous algorithm. Operators primarily used the 
FPV feedback display to make decisions and tabulated estimates 
as a secondary reference as both were difficult to track simulta-
neously. Tabulated estimates were primarily used to identify the 
atmospheric winds which were not easily identifiable based on the 
video stream alone. Lack of clear wind feedback is the primary 
driver why operator landings have a slight clumping downwind of 
the target as seen in Fig. 9. Additionally, operators had a common 
tendency to oversteer because they would hold a control input un-
til a certain reference was back in the field of view. After releasing 
the command, the natural turn rate dynamics carried the vehicle 
past the desired heading and the operator had to reverse com-
mand. When this occurred at low altitudes where the area of land 
in the field of view was more limited, issues highlighted in point 
3 causes an increase in 90% CEP miss distance. Last, while depth 
perception was difficult at high altitudes, it was very clear at short 
distances allowing operators a clear indication of when to flare the 
vehicle for smooth landing.

4.4. Live map

Having identified the strengths and weaknesses of the previ-
ously analyzed methods, the goal of the LM method is to provide 
the human operator with increased spatial awareness of the air-
drop system and surrounding area, particularly in the horizontal 
plane. A graphical user interface (GUI) was created to display real-
Fig. 10. Landing dispersion of three human operators using the live map feedback 
method.

time updates of the current location and heading of the aerial 
vehicle in the drop zone. Three pilots, with skill levels again rang-
ing from intermediate to advanced (based on prior experience and 
not specifically related to this method), controlled the airdrop sys-
tem to the IP with the proposed method. Landing dispersion plots 
are presented in Fig. 10 with circles denoting 50% and 90% CEP. 
Human operators were able to land 25% more accurately than the 
fully autonomous system with a 50% CEP of 19.2 m and 90% CEP 
of 43.2 m. The landing points are relatively dispersed in the region 
around the IP with no particular clumping. The four major outliers 
are a result of the human operators learning to use the LM feed-
back method as the landings occurred early in the flight testing.

As with the previous studies, operator feedback was gathered to 
gain insight on the elements of the display that were beneficial to 
meet the mission objectives. A summary of the main points listed 
by operators is presented below.

1. Atmospheric wind direction and relative magnitude (with re-
spect to vehicle airspeed) was clearly identifiable based on the 
distortion of the breadcrumb trail.

2. Markers for ground hazards were easy to identify and avoid 
during final approach.

3. A slight disconnect between the physical system and operator 
was apparent and manifested in lateral control errors while 
steering the vehicle.

With the use of breadcrumbs, human operators are able to clearly 
see the impact of wind on the trajectory of the vehicle. Bread-
crumbs have greater separation when the vehicle is flying with the 
wind (due to greater inertial velocity) and are closer together when 
flying into the wind. With wind knowledge (from both bread-
crumbs and displayed navigation estimates) and a clear represen-
tation of the vehicle location with respect to the target, operators 
were confident in their ability to steer the vehicle to the IP. Point 2 
highlights the ability of markers to provide obstacle references to 
avoid during landing. This could be expanded by importing terrain 
maps and having the obstacle pattern change with altitude.

Last, point 3 indicated a disconnect between the physical sys-
tem and the human operator. Operators exhibited issues with over-
steering the vehicle, similar but more pronounced than what was 
observed in the case of FPV feedback. The LM display primarily 
shows the steady state turn rate behavior of the vehicle though 
the heading vector and arcing of breadcrumbs behind the system. 
After an asymmetric input has been commanded by an operator, it 
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Fig. 11. Landing dispersion of three human operators using the virtual cockpit dis-
play method.

can take approximately 1 second for the map to display the result-
ing turn due to the lateral dynamics of the parafoil. As a result 
of this time delay, the operator would often command sequen-
tially large values as a result of the system appearing unresponsive 
only to then have the vehicle enter a sharp turn and pass the de-
sired heading. This problem was not observed in the FPV feedback 
method as a slight roll of the camera was quickly noticeable by op-
erators after commanding an asymmetric brake input. The second 
manifestation of the disconnect between operator and system ap-
peared during final approach. In early flights, operators were prone 
to make aggressive maneuvers to minimize the miss distance re-
sulting in harsh impacts. Operators were able to overcome both 
issues through training, but proved to be a disadvantage of this 
method.

4.5. Virtual cockpit display

The goal of the VCD method is to combine the FPV and LM 
feedback methods into a unified display where the combined ben-
efit overcomes the individual difficulties using just one method. In 
particular, the FPV method provided a strong body centric feedback 
that provided the operator with a strong connection to the vehi-
cle while the LM method gave the operator a clear global sense 
of the vehicle’s position and atmospheric winds with respect to 
the target. For this study, one novice operator and two advanced 
operators used the VCD display to control the airdrop system to 
the target. The novice operator had minimal flight experience but 
knowledge of human interfaces whereas the two advanced opera-
tors had significant flight experience and had tested the previous 
two methods as well giving them significant preparation for this 
task. The landing dispersion of the three operators are presented 
in Fig. 11 with a general tight clumping around the IP except for 
two significant outliers that occurred during several of the novice 
operators initial flights.

With the VCD method, the combined 50% CEP for all users was 
16.9 m, a 22% improvement over the conventional autonomous 
system tested during the same flight test session. The 90% CEP was 
reduced to 37.7 m which is a strong improvement considering two 
large misses by the novice operator during initial flight testing. If 
the two outliers are rejected as part of the learning processes, the 
results show a 50% CEP of 16.1 m and 90% CEP of 32.9 m. Overall, 
these results improve upon the FPV method and exhibited a nearly 
equivalent improvement as the LM method.

Qualitative information from operators was used to understand 
their interactions with the VCD method and further understand 
the landing statistics. A summary of human operator responses are 
presented below.
1. Having multiple display components was important as each 
was most beneficial during different segments of the flight. 
LM component was most useful at altitude. At intermediate 
altitudes, the FPV allowed the user to survey the DZ while 
the LM helped maintain spatial awareness and prevented dis-
orientation. During approach the FPV stream along with the 
tabulated indicators of altitude and glide slope were the most 
valuable.

2. Users felt confident in understanding where the airdrop sys-
tem was and was heading in the airspace above the DZ. How-
ever, slight user discomfort was noted when mentally reconcil-
ing the inertial representation of the LM and the body centric 
view of the FPV.

3. The largest difficulty was handling changes to the wind mag-
nitude and direction below the current altitude.

The combination of both methods successfully provided the human 
operator with a clear understanding of the airspace above the DZ 
including the parafoil system itself and any potential obstacles to 
avoid. In particular, the primary issue of each method was solved 
by using feedback from the other method. Disorientation at low 
altitude seen in FPV testing was completely removed due to the 
LM and over steering was greatly reduced with video feedback of 
showing what was ahead of the airdrop system. With the addition 
of the FPV, the operator is able to base control decisions on numer-
ous hours driving ground vehicles due to the perspective it offers. 
The FPV video stream also helped understand the transient dynam-
ics as the roll was noticeable before the steady state turn rate was 
visible in the LM. Most importantly, this method was the first in 
which the operator was able to comfortably understand the posi-
tion and dynamics of the guided airdrop system enabling operators 
to focus on future conditions of the wind velocity closer to ground 
level. This is important as it represents the primary driver of land-
ing error in autonomous systems. Facing the same challenges as 
the conventional autonomous system, the 22% improvement by the 
human user is significant. The user also expressed slight difficulty 
mentally reconciling the LM with the FPV. In situations where the 
vehicle was flying south, the LM indicator showed the vehicle mov-
ing down the page while the FPV stream always gives a sense of 
moving forward, or up the screen. Occasionally this caused an op-
erator to turn in the incorrect direction briefly before correcting. 
Future work into improved fusion of data streams, such as plotting 
the LM on different coordinate axes is expected to further improve 
this method.

A summary of all the landing statistics of each method is pre-
sented in Table 1 with a comparison against the conventional au-
tonomous system tested concurrently.

5. Conclusion

It has been shown that semi-autonomous, human control is ca-
pable of achieving superior landing accuracy compared to a state 
of the art, fully autonomous airdrop system. This was established 
through a series of flight test experiments that were trialed by 
multiple human operators. The four human-in-the-loop control 
modalities explored in this work were conventional remote con-
trol (operator at the drop zone looks up to visually track the aerial 
vehicle), first person view (a real-time camera feed from the pay-
load is supplied to the operator), live map (GPS based bird’s eye 
map of the drop zone), and virtual cockpit display (a combination 
of first person view and live map). These feedback methods influ-
enced operator control decisions to satisfy the goal of minimizing 
system landing error and maximizing payload survivability. The 
conventional remote control method proved to be the most effec-
tive method with a 41% improvement over the autonomous system 
but requires the operator to be both physically present at the drop 
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zone and able to see the aerial vehicle from the ground. The digital 
display methods found that operators were most certain of their 
actions and accurate when provided both the live map and first 
person view feedback as in the virtual cockpit display. Additionally, 
key metrics used by operators were established to be the altitude 
margin (which aids operators in deciding when to fly towards the 
target), altitude, and atmospheric wind direction and magnitude. It 
is expected that further fusion of the available data into a seamless 
interface would continue to improve operators’ landing capabilities 
making human-in-the-loop control a strong candidate for achiev-
ing precision payload delivery.
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