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The need for accurate and reliable navigation techniques for micro
air vehicles plays an important part in enabling autonomous opera-
tion. Traditional navigation systems typically rely on periodic global
positioning system updates and provide little benefit when operating
indoors or in other similarly shielded environments. Moreover,
direct integration of the onboard inertial measurement unit data
stream often results in substantial drift errors yielding virtually
unusable positional information. This paper presents a new strategy
for obtaining an accurate navigation solution for the special case of
a micro hopping air vehicle, beginning from some known location
and heading, using only one triaxial accelerometer and one triaxial
gyroscope. Utilizing the unique dynamics of the hopping vehicle, a
piece-wise navigation solution is constructed by selectively integrat-
ing the inertial data stream for only those short periods of time
while the vehicle is airborne. Interhop data post processing and sen-
sor bias recalibration are also used to further improve estimation
accuracy. To assess the performance of the proposed algorithm, a
series of tests were conducted in which the estimated vehicle posi-
tion following a sequence of 10 consecutive hops was compared
with measurements from an optical motion-capture system. On aver-
age, the final estimated vehicle position was within 0.70 m or just
over 6% from its actual location based on a total traveled distance
of approximately 11 m. [DOI: 10.1115/1.4007975]

1 Introduction

Micro vehicle platforms are an attractive choice for many mobile
applications. They are ideally suited for search and rescue, autono-
mous exploration, surveillance, and a host of other military mis-
sions. Accordingly, accurate and reliable navigation of these
vehicles is critical to the successful execution of the intended mis-
sion. Considering the relatively small footprint and low payload
capacity inherent to micro vehicle platforms, a growing need exists
for a lightweight, cost-effective solution for automatic vehicle
localization and navigation. Furthermore, the autonomous naviga-
tion challenge is often intensified when operating within unknown,
indoor environments. Such scenarios present extreme difficulty to
micro vehicle designers in that conventional localization techniques
including global positioning system (GPS) communication are no

longer accessible within certain covered structures or similarly
shielded locations.

While the concept of micro vehicle navigation has been exten-
sively investigated, a large portion of research focuses on vehicle
state estimation and localization via the fusion of several different
onboard sensors. One such example presented by Liu et al. [1]
combines the use of GPS with a microelectromechanical (MEMS)
based inertial measurement unit (IMU). Vehicle acceleration and
angular velocity are continuously integrated and subsequently
fused together with discrete GPS positional measurements using a
Kalman filter. Although direct integration of the IMU data is pos-
sible, some form of external reference or filtering algorithm is
required such that the resulting error growth is sufficiently
bounded. Similarly, several researchers [2–6] have extended the
GPS/IMU approach by adding additional sensors including mag-
netometers, differential pressure transducers, and baro-altimeters
to both improve accuracy and help compensate for vehicle attitude
and localization errors during periods of degraded GPS signal
quality. Using flight test data from a micro aerial vehicle (MAV)
quadrotor equipped with GPS receiver, MEMS-based IMU, baro-
altimeter, and triaxial magnetometer, Wendel et al. [3] demon-
strated that GPS outages of up to 50 s could be successfully man-
aged with minimal attitude drift. However, significant errors in
vehicle position (on the order of 30 m) were reported within the
first 10 s of GPS signal loss. While these navigation strategies do
provide some level of defense against brief signal interruption,
additional techniques must be employed to achieve sustained
operation under such GPS-denied conditions. Recently, several
vision based strategies for indoor navigation have been adapted to
fit micro vehicles [7–9]. Using a single downward looking camera
coupled with an onboard IMU, Blösch et al. [8] developed and
tested a MAV quadrotor capable of navigating through unknown,
indoor environments by means of a 3D point map constructed
using a simultaneous localization and mapping (SLAM) algo-
rithm. Also, Bachrach et al. [9] developed a similar quadrotor ve-
hicle using a scanning laser range sensor, onboard IMU, and
similar visual SLAM techniques fused together with an extended
Kalman filter (EKF). Unfortunately, vision-based navigation of
micro vehicles requires relatively large computational power and
complex sensing ability to drive such algorithms.

In contrast to strictly airborne or land-based micro vehicles,
several new hybrid configurations specifically designed to explore
rough, uneven terrain have been developed [10–14]. These speci-
alized vehicles offer numerous advantages over more conven-
tional concepts given their unique ability to hop over large
obstacles or gullies and also loiter on the ground for extended
periods of time while conserving energy. Likewise, many of the
challenges associated with indoor micro vehicle navigation are
analogous to those encountered with pedestrian tracking in urban
settings. A large collection of research exists which explores vari-
ous methods for indoor pedestrian tracking including vision-based
systems, foot-mounted IMUs, and radio frequency identification
(RFID) with the latter relying on a network of preinstalled RFID
tags and variations in received signal strength indicators to deduce
specific information about the subject’s location, speed, and direc-
tion of travel [15–19]. For example, Jiménez Ruiz et al. [15] used
a foot mounted IMU combined with RFID and an extended Kal-
man filter to track the movements of an individual within an office
building to within less than 3 m error. Also, Yun et al. [17] used a
foot-mounted IMU and tri-axis magnetometer combined with gait
pattern recognition, zero velocity updates, and magnetic heading
corrections to achieve similar results.

The work reported here investigates the feasibility of obtaining
an accurate navigation solution for the special case of a micro
hopping vehicle using only a simple, low-cost inertial sensor suite.
By taking advantage of the unique dynamics of the hopping vehi-
cle, a new algorithm has been developed capable of navigating
with reasonable accuracy through unknown, GPS-denied environ-
ments using one triaxial MEMS accelerometer and one triaxial
MEMS gyroscope. The sensor processing algorithm automatically
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detects vehicle takeoff and landing and subsequently integrates
the kinematic IMU equations only for the short time period while
the vehicle is airborne. A novel technique of interhop data proc-
essing and sensor bias recalibration is also used to help minimize
drift errors and improve estimation accuracy. The algorithm has
been experimentally tested to assess the accuracy of the estimated
navigation solution by comparing it with vehicle location meas-
urements from an optical motion capture system with favorable
results.

2 Vehicle Description

This section describes both the prototype vehicle and integrated
onboard electronics used for all experiments reported in this paper.

2.1 Micro Hopping Rotochute. The micro hopping rotochute
is a slightly smaller realization of a new hybrid vehicle originally
proposed by Beyer and Costello [10,11]. Designed to robustly oper-
ate within complex, irregular terrain, the micro hopping rotochute
features a pair of coaxial counter-rotating propellers which, when
powered in short bursts, enable the vehicle to propel itself upward
hopping from one location to the next. Its spherical external shape
and low center of gravity enable the vehicle to passively reorient
itself to an upright position while simultaneously protecting the
rotors from any unwanted contact during ground maneuvers. Inde-
pendent control of both the upper and lower rotor speeds enables
precise orientation control about its vertical axis. Directional con-
trol is achieved via a small mass offset fixed to the vehicle’s outer
cage which creates both an initial tilt prior to takeoff and an addi-
tional pitching moment during flight to further accelerate the vehi-
cle toward its intended target. A schematic diagram of the micro
hopping rotochute is shown in Fig. 1.

The prototype vehicle used during experimental tests is formed
from a 16.5 cm diameter spherical cage constructed using 1.2 mm
diameter nitinol wire. The vehicle base and motor support struc-
ture are fabricated from extruded acrylonitrile butadiene styrene
(ABS) plastic using a rapid prototyping machine. Total vehicle
weight is 75.4 g. A pair of 13.8 cm diameter rotors powered by
two independent 5 g brushless outrunner electric motors and two

6 A electronic speed controllers provide the necessary thrust
needed for takeoff. Maximum thrust of the combined rotor system
is approximately 100 g. Electrical power is supplied to the vehicle
from a two-cell, 300 mAh lithium polymer (LiPo) battery. Control
is provided using a 2.4 GHz transmitter and six channel receiver.

2.2 Guidance and Inertial Navigation Assistant (GINA)
Wireless IMU. The inertial sensing suite used onboard the micro
hopping rotochute is the GINA developed by Mehta and Pister
[20]. The GINA mote, shown in Fig. 2, is a small wireless IMU
comprised of two separate triaxial MEMS accelerometers and one
triaxial MEMS gyroscope. Also packaged within the 26.6 mm by
21.6 mm GINA platform is a 16 bit Texas Instruments
MSP430F2618 microprocessor and an Atmel AT86RF231
2.4 GHz wireless transceiver. During operation, all sensors are
sampled at a frequency of 333 Hz and data packets are transmitted
back to an Atmel AVR RZUSBstick base station (Fig. 2) attached
to a laptop computer where a custom Python script is used to read,
interpret, and record all incoming data. Table 1 details the specifi-
cations for each inertial sensor used onboard the GINA mote.
Note that low-pass filters have been enabled in hardware for each
sensor to help minimize noise. Additional sensors including mag-
netometers and GPS receivers have also been adapted to fit the
GINA platform but were not considered for this experiment.

3 Navigation Algorithm

The navigation algorithm presented within this paper is based
upon selective integration of the vehicle kinematic equations of
motion using data acquired from two onboard inertial sensors. A
simple technique of interhop sensor bias recalibration is included
such that a reasonably accurate navigation solution is obtained
with minimal drift. Mathematical modeling of the inertial sensors
and vehicle kinematics is presented next followed by a detailed
description of the sensor processing algorithm.

3.1 Gyroscope Model. The gyroscope model depends on
several key sensor parameters to relate the components of the raw
gyroscope output, denoted x�x ;x

�
y , and x�z , to the body frame

angular velocity vector ~xB=I shown in Eq. (1). Denoting the body
frame components of the vehicle angular velocity vector as p, q,
and r, the gyroscope sensor model is given in Eq. (2)

~xB=I ¼ p~IB þ q~JB þ r~KB (1)

x�x
x�y
x�z

8<
:

9=
; ¼

BGx

BGy

BGz

8<
:

9=
;þ

NGx

NGy

NGz

8<
:

9=
;þ ½SG�½TSB�

p
q
r

8<
:

9=
; (2)

where BGi and NGi represent the ith component of the gyroscope
bias and noise vectors, respectively. Additionally, TSB represents
the transformation matrix from the body to the sensor reference

Fig. 1 Micro hopping rotochute schematic diagram
Fig. 2 AVR RZUSBstick base station (left) with GINA wireless
IMU (right)
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frame, and SG is the gyroscope cross-axis sensitivity and scaling
matrix as defined in below equation.

SG ¼
SGx Cy

Gx Cz
Gx

Cx
Gy SGy Cz

Gy

Cx
Gz Cy

Gz SGz

2
4

3
5 (3)

Although the measured vehicle angular velocity is subject to
noise and bias offset, details regarding sensor error mitigation are
discussed in Secs. 3.4 and 4.1.

3.2 Accelerometer Model. Similar to the gyroscope, the ac-
celerometer model also depends on several key sensor parameters
including bias, scale factor, cross-axis sensitivity, and misposi-
tion, to relate the raw accelerometer output (a�x ; a

�
y , and a�z ) and

the linear acceleration of point P at which the IMU is located.
Denoting the acceleration of point P as the vector ~aP=I with body
frame components aPx; aPy, and aPz, as shown in Eq. (4), the gen-
eral accelerometer sensor model is provided in Eq. (5)

~aP=I ¼ aPx
~IB þ aPy

~JB þ aPz
~KB (4)
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where BAi and NAi denote the ith component of the accelerometer
bias and noise vectors, respectively, SA is the accelerometer
cross-axis sensitivity and scaling matrix shown in Eq. (6), g is the
gravitational constant, and h and / are the vehicle pitch and roll
angles, respectively. Note the trigonometric shorthand notation:
cx � cos x; sx � sin x; tx � tan x.

SA ¼
SAx Cy

Ax Cz
Ax

Cx
Ay SAy Cz

Ay

Cx
Az Cy

Az SAz

2
64

3
75 (6)

Using Eq. (5), the linear acceleration of point P with respect to
the inertial frame is easily computed from the raw accelerometer
data given the current vehicle tilt angles / and h. Furthermore, the
vehicle mass center acceleration ~aCG=I is related to the accelera-
tion at point P as shown in below equation.

~aCG=I ¼ ~aP=I þ~aB=I � ð~rP!CG þ ~dAÞ þ ~xB=I

� ð~xB=I � ð~rP!CG þ ~dAÞÞ (7)

where ~aB=I is the vehicle angular acceleration vector. Addition-
ally, the position vector extending from the IMU point P to the ve-
hicle mass center is denoted as ~rP!CG, and ~dA is the small
accelerometer misposition vector. Although the measured vehicle

acceleration is subject to sensor noise and bias offset, details
regarding sensor error mitigation are discussed in Secs. 3.4 and 4.1.

3.3 Vehicle Kinematics. Quaternions are used in place of
Euler angles to avoid singularity problems when computing vehi-
cle orientation during ground maneuvers. The corresponding kine-
matic equations of motion are provided in below equations

€x
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€z
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>>:
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where aCGx; aCGy, and aCGz denote the body frame components of
the vehicle mass center acceleration, and the matrix TIB shown in
Eq. (10) represents the rotational transformation matrix from the
body to the inertial reference frame using quaternion form. Note
that Eq. (8) is a second order linear differential equation govern-
ing the vehicle translational kinematics.

TIB ¼
q2

0 þ q2
1� q2

2� q2
3 2q1q2 � 2q0q3 2q1q3þ 2q0q2

2q1q2þ 2q0q3 q2
0� q2

1 þ q2
2 � q2

3 2q2q3� 2q0q1

2q1q3� 2q0q2 2q2q3 þ 2q0q1 q2
0 � q2

1� q2
2þ q2

3

2
64

3
75

(10)

3.4 Sensor Processing Algorithm. The basic algorithm used
to process data received from the onboard IMU is shown in Fig. 3.
Beginning from some known location and heading, a piece-wise
navigation solution is constructed by post processing all data
acquired from the immediately preceding hop and subsequently
updating the estimated vehicle state before any further hops are
initiated. In contrast to continuous integration of the IMU data
stream, this technique of selective integration and interhop data
processing offers several key advantages over other real-time, re-
cursive algorithms including the ability to detect and compensate
for slight changes in gyroscope sensor bias. Also, a variety of off-
line filtering techniques can be applied to help minimize the
effects of sensor noise including zero phase error filters and linear
regression analysis.

Starting from rest, the sensor processing algorithm proceeds as
follows. First, a 1–2 s delay is needed prior to takeoff such that a
short segment of static sensor data are acquired. Using this portion
of static sensor data, gyroscope bias for the subsequent hop is
computed using the mean value acquired from each sensor axis.
Note that time averaged sensor readings are used to minimize any
possible noise contamination. Next, a brief throttle pulse is sent to
the vehicle to initiate a new hop. Each hop typically results in
1–3 s of sustained flight during which the onboard inertial sensors
are continuously sampled and the corresponding timestamped
data stored for later processing. Once ground impact is detected,
evidenced by an abrupt change in vehicle acceleration, data

Table 1 Inertial sensor specification for GINA wireless IMU

Sensor
type

Accelerometer
(analog)

Accelerometer
(digital)

Gyroscope
(digital)

Manufacturer STMicroelectronics Kionix InvenSense
Model LIS344ALH KXSD9-1026 IGT-3200
Configuration 3-axis 3-axis 3-axis
Full-scale range 62g 68 g 62000 deg =s
Noise 50 lg=

ffiffiffiffiffiffi
Hz
p

750 lg=
ffiffiffiffiffiffi
Hz
p

0:03 deg=s=
ffiffiffiffiffiffi
Hz
p

Low-pass filter 44 Hz 50 Hz 42 Hz
Operating temperature –40/80 �C –40/85 �C –40/85 �C
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acquisition is halted as the vehicle attempts to passively reorient
itself to an upright position. Once a static state is reached, defined
by sufficiently small changes between consecutive sensor sam-
ples, post processing of the previously recorded flight data begins
with numerical integration of the measured vehicle angular veloc-
ity. The resulting orientation time history is then used to transform
the measured accelerometer data from the body to the inertial ref-
erence frame using the transformation matrix TIB defined in Eq.
(10). Following transformation, the accelerometer data are first fil-
tered or curve fit to minimize noise and then numerically double
integrated. Lastly, the navigation solution is then updated using
the newly estimated vehicle location, and the entire process is
repeated until the desired waypoint is reached.

Although accurate orientation estimation is critical to precise
vehicle localization, yaw angle estimation is inherently difficult
without some form of external heading reference or specialized
sensor. In contrast to both vehicle roll and pitch which are inte-
grated only during flight, vehicle heading is integrated continu-
ously through ground impact until a sufficiently static state is
reached. As a result, the only available estimate of vehicle head-
ing following each hop is simply this final integrated value. Simi-
larly, prehop vehicle roll and pitch angles are not explicitly
measurable quantities given the limited onboard sensor suite and
must be known prior to angular velocity integration. Fortunately,
this problem of unknown initial vehicle tilt is easily overcome by
neglecting any change in accelerometer bias between consecutive
hops and directly solving for both vehicle roll and pitch (/ and h)
using the time-averaged static accelerometer data and the acceler-
ometer sensor model presented in Eq. (5).

3.5 Extended Kalman Filter. In addition to the sensor proc-
essing algorithm described in Sec. 3.4, an extended Kalman filter
may also be used to estimate vehicle state from discrete inertial sen-
sor measurements. Although several different forms of the EKF
exist for state estimation, one such example is briefly presented
here and will be used for comparison purposes in Sec. 4. In this
application, a hybrid extended Kalman filter [21] was selected
which features continuous models of plant dynamics, observation,
and covariance propagation combined with discrete-time equations

for gain computation and measurement updates. The kinematic dif-
ferential equations describing vehicle motion are of the form

_~xðtÞ ¼ f ð~x; tÞ þ ~wðtÞ (11)

~yðtÞ ¼ hð~x; tÞ þ~vðtÞ (12)

where ~w is the process noise vector and ~v is the measurement
noise vector. Note that both process noise and measurement noise
are assumed to be zero mean Gaussian random sequences with di-
agonal covariance matrices Q and R, respectively.

The plant dynamics, represented by the nonlinear vector func-
tion f ð~x; tÞ, are shown in below equations

_x
_y
_z

8<
:

9=
; ¼ ½TIB�

u
v
w

8<
:

9=
; (13)

_q0

_q1

_q2

_q3

8>>><
>>>:

9>>>=
>>>;
¼ 1

2

0 �p �q �r

p 0 r �q

q �r 0 p

r q �p 0

2
6664

3
7775

q0

q1

q2

q3

8>>><
>>>:

9>>>=
>>>;

(14)

_u

_v

_w

8><
>:

9>=
>;
¼

aCGx

aCGy

aCGz

8><
>:

9>=
>;
�

0 �r q

r 0 �p

�q p 0

2
64

3
75

u

v

w

8><
>:

9>=
>;

(15)

_p

_q

_r

8><
>:

9>=
>;
¼

0

0

0

8><
>:

9>=
>;

(16)

_aCGx

_aCGy

_aCGz

8><
>:

9>=
>;
¼

0

0

0

8><
>:

9>=
>;

(17)

where u, v, and w represent the body frame components of vehicle
translational velocity. Note the dynamics in Eqs. (16) and (17)
imply that current estimates of vehicle angular velocity and mass
center acceleration are simply held fixed between measurement
updates from the onboard IMU.

Propagation of the error covariance matrix P is performed,
according to Eq. (18) where F is the Jacobian linearization of the
plant model f ð~x; tÞ shown in Eq. (19).

_PðtÞ ¼ ½FðtÞ�½PðtÞ� þ ½PðtÞ�½FðtÞ�T þ ½Q� (18)

FðtÞ ¼ @f ð~x; tÞ
@~x

(19)

Computation of the Kalman gain matrix K is performed using
Eq. (20) where H is the Jacobian linearization of the system mea-
surement model hð~x; tÞ shown in Eq. (21).

KðtÞ ¼ ½PðtÞ�½H�T ½½H�½PðtÞ�½H�T þ ½R���1
(20)

H ¼ @hð~x; tÞ
@~x

¼ ½½0�6x10 ½I�6x6� (21)

State and error covariance updates, denoted þ~x and þP, are cal-
culated as shown in below equations

þ~xðtÞ ¼~xðtÞ þ ½KðtÞ�f~zðtÞ � ½H�~xðtÞg (22)

þPðtÞ ¼ ½½I� � ½KðtÞ�½H��½PðtÞ� (23)

where~z is the six element measurement vector comprised of vehi-
cle angular velocity and mass center acceleration as measured by
the onboard IMU.

Fig. 3 Navigation algorithm flowchart
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4 Results

To quantify the performance of the proposed navigation algo-
rithm, a series of tests were conducted in which the estimated navi-
gation solution was compared with exact vehicle location
measurements obtained using a 3D optical motion capture system.
The test vehicle and experimental setup used for all studies reported
in this paper are shown in Figs. 4 and 5, respectively. Note that
small spherical retroreflective markers are attached to the outer
frame of the test vehicle to facilitate position and orientation track-
ing during in-flight and ground maneuvers. The optical motion
tracking system consists of 12 wall-mounted cameras that emit and
collect visible infrared light at up to 2000 frames/s. Optical correla-
tion techniques are employed in the system software to locate in 3D
space the position of each marker to within 1 mm accuracy. Using
this information, time-stamped vehicle position and orientation
measurements are obtained in real-time.

4.1 Example Hop. A single example hop is first considered
to illustrate the trajectory estimation accuracy and overall mecha-
nism of the proposed navigation algorithm. For this example,
a short throttle pulse lasting 1.25 s was used to initiate hop.

Figures 6 and 7 show the resulting 3D trajectory and overhead
cross range versus range time history of the vehicle measured
using the optical motion-capture system. During flight, a maxi-
mum height of approximately 0.40 m was achieved with a total
horizontal distance traveled of 1.12 m and 0.21 m in range and
cross range, respectively. Ground impact was detected 1.79 s after
takeoff followed by several short bounces and oscillations as the
vehicle attempts to passively upright itself. As a result of vehicle
bounce following landing, a minimum radial distance of 0.19 m
was measured between the vehicle impact point and its final at
rest location.

Also shown on Fig. 7 are the corresponding estimated vehicle
trajectories calculated using three different data post processing
schemes. The first method is simply direct integration of the trans-
formed vehicle acceleration data using a fourth order
Adams–Bashforth multistep integration routine [22]. Second, the
transformed vehicle acceleration along the ~II and ~JI axes is fit
using least squares to a second order polynomial function prior to
integration such that any sensor noise contamination is mini-
mized. Higher order polynomial functions were also considered
but provided little or no improvement in position estimation accu-
racy. To further compensate for sensor noise and to serve as a
comparison model for the previous two direct integration techni-
ques, the final data processing scheme employs an EKF as
described in Sec. 3 to estimate vehicle orientation and position
from the onboard inertial sensor measurements. Although filter
performance is highly dependent on the selection of several tuning

Fig. 4 Micro hopping rotochute prototype vehicle

Fig. 5 Indoor flight facility with optical motion capture
system [11]

Fig. 6 Altitude versus cross range versus range for example
hop

Fig. 7 Cross range versus range for example hop
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parameters, estimated values for process and measurement noise
variance were 0.05 and 0.015 rad2/s2 for the vehicle angular dy-
namics, and 0.5 and 0.23 m2/s4 for the translational dynamics.
Also, the filter error covariance matrix was initialized to zero
although minimal improvement in performance was noted when
using higher values. In each case, the estimated trajectories corre-
late well with the measured vehicle motion resulting in final posi-
tional errors of 0.026 m, 0.031 m, and 0.032 m for the direct
integration, polynomial fit, and EKF data processing schemes,
respectively. Note these error values are computed based on the
minimum radial distance between the final measured and esti-
mated vehicle locations.

Figures 8 and 9 show the measured and estimated orientation
time histories using both direct integration and the EKF. In con-
trast to vehicle acceleration, measured angular velocity is not
polynomial fit prior to integration. For this example hop, the
measured vehicle tilt just prior to takeoff was approximately zero
before reaching a maximum value of 10 deg and –5 deg in pitch
and roll, respectively. Maximum error between the measured and
estimated vehicle pitch and roll prior to ground impact was less
than 2.4 deg for both direct integration and the EKF. Similarly,

estimated vehicle heading closely matches that of the measured
data for the in-flight portion of the hop; however, 6.9 deg error is
evident once the vehicle has landed and returned to an upright,
static state. As expected, the amount of estimation error is slightly
higher in yaw considering the fact that vehicle heading must be
integrated from takeoff through ground impact. Consequently, the
rapid changes in vehicle attitude following ground impact, noted
in Fig. 9, combined with possible sensor saturation and other non-
linear effects make accurate yaw angle estimation difficult with-
out some form of reference for heading determination.

4.2 Multihop Navigation Accuracy Study. To asses the ac-
curacy of the proposed navigation algorithm, 20 separate test
sequences, each consisting of 10 consecutive hops, were per-
formed. Although the proposed navigation algorithm is capable of
estimating position for a sequence of dissimilar vehicle trajecto-
ries, a 1.25 s throttle pulse was used for simplicity to initiate each
hop in all tests. No attempt was made to actively control vehicle
heading except to ensure that each hop remained inside the optical
motion capture volume at all times. The tabulated results for all
20 test sequences are provided in Table 2. Note that error values
reported for each test represent the minimum radial distance
between the measured and estimated vehicle positions following
completion of the last hop in each sequence.

On average, the proposed algorithm was able to estimate the
position of the vehicle to within 0.70 m based on a mean traveled
distance of approximately 11 m. Standard deviations of 0.249 m,
0.269 m, and 0.271 m were calculated using the direct integration,
polynomial fit, and EKF data processing schemes, respectively.
Note the EKF approach does improve estimation accuracy by as
much as 16% when compared to the other two direct integration
techniques; however, the increased computational cost required to
support such an algorithm must be considered when intended for
use in low-power embedded systems. The average bounce displace-
ment following landing in each test was 0.116 m with a standard
deviation of 0.076 m. For demonstration purposes, Fig. 10 provides
an overhead view of the estimated and measured vehicle trajectory
for an example 10 hop sequence. Also shown for comparison in

Fig. 8 Roll and pitch angle versus time for example hop

Fig. 9 Heading (yaw) angle versus time for example hop

Table 2 Vehicle position error comparison and general statis-
tics for all 20 hop sequences

Mean error (m)

Test
nos.

Total
distance (m)

Original
accelerometer

2nd order
polynomial EKF

1 10.307 0.841 0.793 0.524
2 12.943 0.577 0.548 0.435
3 12.076 0.490 0.591 0.252
4 12.852 1.258 1.348 1.069
5 11.440 0.564 0.829 0.619
6 10.734 0.346 0.338 0.384
7 12.234 0.626 0.714 0.668
8 11.177 0.530 0.256 0.747
9 9.056 0.603 0.628 0.620
10 11.475 1.358 1.331 0.246
11 11.904 0.702 0.766 0.944
12 10.799 0.504 0.537 0.806
13 9.967 0.901 0.675 0.520
14 11.006 0.706 0.758 0.814
15 11.717 0.809 0.723 0.941
16 10.277 0.444 0.398 0.140
17 9.005 0.749 0.726 0.425
18 10.874 0.648 0.668 0.146
19 10.424 0.681 0.593 0.665
20 9.917 0.727 0.546 0.820

Average 11.009 0.703 0.688 0.589
Std. deviation 1.103 0.249 0.269 0.271
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Fig. 10 is the estimated vehicle position obtained from continuous
integration of the inertial sensor data between several consecutive
hops. Note that nearly 10 m error is evident after just 10 s of contin-
uous integration.

Table 3 details the vehicle orientation estimation accuracy for
each hop in all 20 test sequences (200 hops in total). The maxi-
mum error between the measured and estimated vehicle pitch and
roll was 9.14 deg and 9.22 deg for the direct integration and EKF
data processing schemes, respectively. Also, the maximum error
in prehop estimation of vehicle tilt angles (/ and h) calculated
using the time averaged static accelerometer data were 3.17 deg
with a mean error and standard deviation of 0.04 deg and 0.93 deg
in pitch and 0.15 deg and 1.05 deg in roll, respectively. Further-
more, yaw estimation accuracy was considered on both an indi-
vidual hop basis and in the combined sense following completion
of each 10 hop sequence. The maximum yaw angle error for any
single hop was found to be just over –22 deg with a mean error of
–0.81 deg and a standard deviation of 5.77 deg for the direct inte-
gration case. Note that minimal improvement in yaw estimation
accuracy is achieved when using the EKF. In the combined sense,
maximum yaw angle estimation error is significantly higher at
approximately –34.3 deg and –36.6 deg for direct integration and
the EKF cases, respectively. This degradation in yaw estimation
accuracy following multiple consecutive hops comes at no sur-
prise when considering that the resulting heading error from two
consecutive hops could, in some cases, add together and double or

simply sum to zero. However, it must be noted that despite the
inherent difficulties in vehicle heading estimation, a reasonably
accurate navigation solution is still achieved. In a more practical
application, some form of heading reference (i.e., magnetometer
feedback, vision, etc.) is recommended to ensure the resulting
error growth is sufficiently bounded.

5 Conclusions

The work reported here explores the feasibility for obtaining an
accurate navigation solution for a micro hopping vehicle using only
one triaxial MEMS accelerometer and one triaxial MEMS gyro-
scope. By exploiting the unique dynamics of the micro hopping
rotochute, a new algorithm was developed based on selective inte-
gration of the inertial sensor data and interhop data processing and
sensor bias recalibration. Additionally, a series of tests were con-
ducted in which the results from the estimated navigation solution
were compared with those measured using a 3D optical motion cap-
ture system. On average, vehicle position error was just over
0.70 m following a sequence of 10 consecutive hops. In order to
minimize the effects of sensor noise, polynomial fit expressions for
vehicle horizontal acceleration and Kalman filtering were also
investigated and found to provide at best 16% accuracy improve-
ment in the final estimated vehicle position. Overall, the proposed
navigation algorithm has demonstrated that obtaining reasonably
accurate estimates of vehicle localization in complex, GPS-denied
environments is possible using only inexpensive, lightweight iner-
tial sensors.

Nomenclature

~a ¼ vehicle linear acceleration vector
ax; ay; az ¼ body frame components of the vehicle mass center

acceleration
BAi;BGi ¼ ith component of the accelerometer and gyroscope

bias vector
Cj

Ai;C
j
Gi ¼ cross-axis sensitivity of accelerometer and gyroscope

ith axis with respect to the jth axis
F ¼ linearized system matrix
g ¼ gravitational acceleration

H ¼ linearized measurement matrix
I ¼ identity matrix

K ¼ Kalman gain matrix
NAi;NGi ¼ ith component of accelerometer and gyroscope noise

vector
P, Q, R ¼ error, process noise, and measurement noise

covariance matrices
p, q, r ¼ angular velocity components in body reference frame
~ra!b ¼ position vector extending from generic point a to

another point b
SA; SG ¼ scaling matrices of accelerometer and gyroscope
SAi; SGi ¼ scale factor for ith axis of accelerometer and

gyroscope
TIB ¼ transformation matrix from body to inertial reference

frame
TSB ¼ transformation matrix from body to sensor reference

frame
t ¼ time

u, v, w ¼ body frame components of vehicle translation
velocity

~v; ~w ¼ measurement and process noise vectors
x, y, z ¼ inertial position components of vehicle mass center

~x ¼ system state vector
~y ¼ system output vector
~z ¼ sensor measurement vector
~a ¼ vehicle angular acceleration vector
~dA ¼ accelerometer misposition vector

/; h;w ¼ vehicle Euler roll, pitch, and yaw angles
~x ¼ vehicle angular velocity vector

Fig. 10 Cross range versus range for example 10 hop sequence

Table 3 Vehicle orientation accuracy comparison and general
statistics

Orientation error (deg)

(Min, Max) Average Std. deviation

Prehop tilt:
Pitch (–2.66, 2.81) 0.04 0.93
Roll (–2.65, 3.17) 0.15 1.05

Direct integration:
Pitch (–8.96, 7.02) 0.27 1.01
Roll (–9.05, 9.14) 0.16 1.30
Yaw (–21.75, 15.14) –0.81 5.77
Yaw (combined) (–34.29, 27.71) –7.91 14.96

EKF:
Pitch (–9.22, 7.03) 0.24 1.02
Roll (–9.15, 9.20) 0.16 1.28
Yaw (–22.04, 14.99) –1.04 6.08
Yaw (combined) (–36.61, 26.58) –10.77 15.55
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Subscripts

B ¼ body reference frame
I ¼ inertial reference frame
S ¼ sensor reference frame

Superscript
� ¼ raw sensor value
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