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Parameter estimation and system identification of smart projectiles is an important and commonly used industrial

tool. Existing methods rely on good initial estimates of the parameters to avoid local minima and ensure proper

convergence. New projectile configurations may include highly nonlinear dynamics or unknown control parameters

that cannot be knownapriori. A newmethod for projectile parameter estimation is proposed that combines an output

error parameter estimation algorithm with meta-optimization. Meta-optimization uses a suite of optimizers in an

intelligent manner to reliably minimize a cost function. This new method is applied to the identification of a smart

projectile system equipped with microspoilers using simulated spark range data. The method is able to reliably

estimate the aerodynamic coefficients of the projectile body as well as the properties of the control mechanism based

on a fit of multiple trajectories.

Nomenclature

CNα
= normal force derivative coefficient

CX0
= zero-yaw axial force coefficient

CX2
= yaw-squared axial force coefficient

CYpα
= Magnus force coefficient

CY0
; CZ0

= zero-yaw normal force coefficients
Clp = roll damping coefficient
Cl0 = zero-yaw rolling moment coefficient
Cmq

= pitch damping coefficient
Cm0

,Cn0 = zero-yaw pitching/yawing moment coefficients
Cmα

= pitching moment derivative coefficient
Cnpα = Magnus moment coefficient
d = reference diameter of projectile
Gi = measurement scaling weighting matrix
g = gravitational constant
IB = mass moment of inertia matrix
J = output error method cost function
Jref = reference cost reduction
L;M;N = moment measure numbers in body frame
m = mass of projectile
N = number of measurements
Nopt = number of optimizers
Np = population size
n = number of unknown parameters
p; q; r = components of rotational velocity of projectile body

with respect to an inertial observer written in the
projectile frame

pi = optimizer selection probabilities
Q = dynamic pressure of projectile
ri = penalty coefficient
t = time
tref = reference computation time
u; v;w = velocity vector scalar numbers in body reference

frame
V = total velocity of projectile
W0;W1 = optimizer weighting function parameters
wi = optimizer performance weights
X; Y; Z = force measure numbers in body frame

x; y; z = position vector measure numbers in inertial
reference frame

x = unknown parameter vector
yi = measurement vector at point i
zi = estimated measurement vector at point i
�α = total angle of attack
δA = microspoiler axial force
δN = microspoiler normal force
δm = microspoiler pitching moment
η = optimizer efficiency metric
λ = microspoiler scaling function
ϕ; θ;ψ = Euler roll, pitch, and yaw of the body
ρ = atmospheric density
σi = standard deviation of measurement noise on ith state
σd = optimizer population diversity
τms = microspoiler time constant
χ2 = goodness of fit metric
Ω0 = microspoiler nominal spin rate
ω0 = microspoiler initial phase

Subscripts

A = aerodynamic force or moment
C = control force or moment
G = gravity force
0 = initial value

Superscript

� = normalized

I. Introduction

C URRENTLY, there are a number of methods employed for
parameter estimation of projectile flight dynamic models.

Historically, parameter estimation has been performed on data from
test firing projectiles under a range of conditions, either in a spark
range [1–3] or using on board sensors [4]. More recently,
computational fluid dynamics (CFD) simulations have been
employed to determine the aerodynamics of new projectiles [5,6].
In addition, CFD techniques have been combined with flight
dynamics simulations to create virtual flyout data that is used in place
of flight testing [7–9].
Most existing projectile parameter estimation methods fall under

the category of maximum likelihood estimators (MLE). These
methods pose the parameter estimation problem in terms of an
optimization problem seeking the parameters that maximize the
likelihood ofmatching a set of experimental data. General versions of
these methods employ a numerical optimizer such as a Newton style
algorithm to solve for unknown parameters. One common algorithm
is the Aeroballistics Research Facility Data Analysis System
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(ARFDAS) [10–12]. ARFDAS uses projectile linear theory to
produce parameter estimates used as the starting point for the MLE.
An iterative approach is used to match simulated six-degree-of-
freedom (6DOF) trajectories with experimental data [1].
A similar approach was developed by Montalvo and Costello

using the output error method (OEM). Like ARFDAS, linear theory
is employed to determine initial values for the unknown parameters
before the Levenberg-Marquardt process is used to estimate the
parameters based on coupled CFD/rigid body dynamics (RBD)
virtual flyouts [9]. Burchett used a gradient-based approach based on
a linear model of the projectile dynamics. Simulated yaw card data
with no measurement noise were used to demonstrate the algorithm.
The gradient-based method was also compared with a genetic-
algorithm-based approach [13,14]. Condaminet et al. investigated
four different problem configurations for estimating the parameters
of a reduced order ballisticmodel using partial flight data. In all cases,
a Newton–Raphson technique is used to solve the optimization
problems [15].
Although existing projectile parameter estimations are powerful

and have been successfully deployed to date, they work best when
given initial parameter values close to the solution. Newton-style
optimizers are local search techniques and are prone to converging on
local optima that are common in projectile parameter estimation
problems. Projectile linear theory can provide reasonable estimates
for some parameters, but does not capture the fully nonlinear
behavior of the projectile and may not be able to provide reasonable
estimates for some parameters.
Like all optimization problems, there are numerous optimizers that

can be used to solve the projectile parameter estimation problem,
each with various strengths and weaknesses. While Newton-based
optimizers are prone to converging on local minima, they are
extremely efficient near a local minima and can converge in few
iterations [16]. Alternatively, global optimizers such as particle
swarm [17,18] and differential evolution [19] are able to converge on
the global minimum without getting caught in local minima.
Although these methods work well for systems with many local
minima, they may require many iterations to converge. Thus, there is
a need for optimizers for projectile parameter estimation that are easy
to use and highly reliable at solving a wide range of problems
[20–22].
This work proposes a new method for reliable parameter

estimation of smart projectile systems. To achieve this goal, a new
robust numerical optimization strategy–dubbedmeta-optimization is
developed based on the framework of algorithmportfolios and hybrid
optimizers. The algorithm iteratively deploys a diverse set of
optimizers in an intelligent manner, improving accuracy and
reliability across a wide set of problems. Themeta-optimizer must be
able to select appropriate optimizers, ensure smooth transitions
between different optimizers, prevent premature convergence in local
minima, and improve optimizer parameters that are poorly tuned.
This paper begins with a description of the smart projectile parameter
estimation problem and the example projectile system considered.
Next, an analysis is performed on the parameter estimation problem
to understand the complex topology of the typical projectile
parameter estimation problem. Next, the algorithm is described,
highlighting the different components of the framework. Finally, the
proposed parameter estimation method is applied to the example
smart projectile system using simulated flight test data that include
measurement noise.

II. Smart Projectile Parameter Estimation

Parameter estimation data are typically collected from flight
testing in a spark range that provides measurements of the position
and orientation of the projectile at discrete points along the flight. The
U.S. Army Research Laboratory Transonic Experimental Facility
spark range consists of 25 orthogonal spark shadowgraph stations
arranged in groups of 5 along an approximately 200 m range. From
each set of images gathered from the spark stations, position and
angular measurements are taken in addition to the time of the
measurements. Trajectory data can also be generated using CFD/

RBD virtual flyouts that use a CFD model to compute the

aerodynamic forces and moment on the projectile, creating realistic

trajectories without the need for expensive flight testing [8,9]. The
system identification problem is formulated using the output error

method (OEM), which defines a cost function as a function of the

difference between given trajectory data and a dynamic model
prediction of the same trajectory. Trajectory data come in the form of

measured data from flight testing or CFD/RBD virtual flyouts.

Predictions of the projectile trajectory are obtained from a 6DOF

projectile flight dynamics representation that simulates the flight of
the projectile given estimates of unknown parameters.

A. Output Error Method

The projectile system identification problem is cast in the output
error format. Under this formulation, a cost function is defined based

on comparing estimated measurements to known data points along a

trajectory. In this case, the estimated measurements are generated

from a simulated trajectory generated using estimates for any
unknown parameters. Figure 1 shows a schematic of how OEM

computes the cost. Here, there are threemeasurements of θ at specific
range locations. A trajectory is simulated using an estimate of the
parameters of the system. The error between the predicted trajectory

and the measurements is found by taking the difference between the

measurement and the predicted trajectory at the same range value.

These errors are computed for every measurement of every state and
combined into a single cost function. The typical cost function for the

OEM is the sum squared error as defined in Eq. (1) [23,24].

J�x� � 1

2

XN
i�1

�zi − yi�TGi�zi − yi� �
Xn
i�1

rijmax�0; g�x��j3 (1)

Here, x is the vector of unknown parameters, y is the measured state

vector, z is the estimated measurement, N is the number of
measurements,n is the number of parameters,Gi is theweighting and

scaling matrix, ri is the penalty coefficient, and g�x� is the inequality
constraint function that is positivewhen the inequality is not satisfied.
The weighting and scaling matrix Gi is generated from three

components. First, the state errors are scaled by the standard

deviation of themeasurement noise, ensuring that all states contribute

to the cost equally. Second, the states can be weighed against each
other to limit the impact of certain states or to highlight others.

Finally, weighting can be applied to each individual measurement

along the trajectory in order to highlight certain behavior and improve
the accuracy of the parameter estimates.
Each parameter is constrained to its search range by an exterior

penalty function. In Eq. (1), this is represented by the function g�x�,
which treats each boundary condition as an inequality constraint.
This penalty function adds to the cost when a parameter exceeds its

bounds. A cubic penalty function is chosen because the second

derivative is zero on the boundary, providing sufficient smoothness
for hill-climbing-based optimization algorithms. The magnitude of

the penalty function is set to allow some exploration beyond the

xxi xj xk

ek

ei

ejMeasurement

Error

Predicted  
Trajectory

Fig. 1 Example schematic of OEM cost function trajectory errors.
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boundary while the overall cost remains high. As the cost is reduced,

the boundary grows steeper relative to the current cost.
In addition to the cost function, the quality of fit for a given set of

parameters is evaluated using the metric χ2. For the jth state, χ2 is
computed using Eq. (2) [25]:

�χ2�j �
XN
i�1

�zji − yji �2
σ2j

(2)

where σj is the standard deviation of the measurement noise for this
state. Lower values indicate a better fit with the expected value of χ2

for an optimal trajectory on the order of the number ofmeasurements.

B. Projectile Flight Dynamics Model

The 6DOF rigid-body flight dynamics simulation is the heart of the
cost function calculation. This model predicts the position,

orientation, velocity, and angular velocity of the projectile as a
function of time over the trajectory. It includes gravity (G),

aerodynamic (A), and control (C) forces and moments. For brevity,
the kinematic and dynamic equations of motion are not presented
here and can be found in the literature [26]. The aerodynamic forces

on the projectile are modeled using existing ballistic expansions with
known coefficients given in Eq. (3).

8<
:
XA

YA

ZA

9=
; � −Qd

8>><
>>:
CX0

� CX2

v2�w2

V2

CY0
� CNα

v
V − CYpα

w
V
pd
2V

CZ0
� CNα

W
V � CYpα

v
V
pd
2V

9>>=
>>; (3)

Here, CX0 is the zero yaw drag coefficient, CX2 is the dynamic drag
coefficient, CY0 and CZ0 are the zero yaw normal force coefficients,

CNα is the normal force coefficient, CYpα is the Magnus force
coefficient, d is the aerodynamic diameter,V is the total velocity, and
Q is the dynamic pressure given byQ � �1∕8�πρd2V2. Theweight of

the projectile expressed in the projectile body frame is given by:

8<
:
XG

YG

ZG

9=
; �

(−sθ
sϕcθ
cϕcθ

)
mg (4)

The total aerodynamic moments are given in Eq. (5):

8<
:
LA

MA

NA

9=
; � Qd2

8>><
>>:
Cl0 � Clp

pd
2V

Cm0
� Cmα

w
V � Cnpα

v
V
pd
2V � Cmq

qd
2V

Cn0 − Cmα

v
V � Cnpα

w
V
pd
2V � Cmq

rd
2V

9>>=
>>; (5)

where Cl0 is the zero-yaw rolling moment coefficient, Clp is the roll
dampingmoment coefficient,Cm0 andCn0 are the zero yaw pitch and

yaw moment coefficients, Cmα is the pitching moment coefficient,
Cnpα is the Magnus moment coefficient, and Cmq is the pitch
damping coefficient. These aerodynamic coefficients are typically

functions of Mach number. The control forces XC; YC; ZC and
control moments LC;MC;NC are application dependent, with each

control method having unique effects on the projectile dynamics.
With all of the applied forces and moments computed, the equations

of motion are numerically integrated forward in time using a fourth-
order Runge–Kutta method to generate a trajectory for the projectile

configuration.
For most projectile parameter estimation problems, only the

aerodynamic coefficients are estimated, but any parameter used in the
model could be estimated aswell. This could include parameters such

as the projectilemassm, themoments of inertia �IB�, and the projectile
diameter d. The projectile aerodynamic model presented here has 12
coefficients that need to be estimated. However, for symmetric

projectiles, CY0
, CZ0

, Cm0
, and Cn0 are zero. In addition, for finned

projectiles, it is usually assumed that the Magnus coefficients, CYpα

andCNpα, are zero as roll rates tend to be small, resulting in negligible

Magnus effects. This reduces the number of aerodynamic coefficients

for finned projectiles to seven: CX0, CX2, CNα, Cl0, Clp, Cmα,

and Cmq.

C. Example Smart Projectile System

The smart projectile configuration considered in this work is a

finned projectile equipped with a single set of microspoilers. The

base projectile is a 30 mmArmy-Navy Finner (ANF). This round is a

popular test bed for new control mechanisms as it has been studied

extensively by the community with well-documented aerodynamics.

This projectile configuration is shown in Fig. 2. The round is

axisymmetric with four fins at the rear of the body. The mass

properties of the standard 30 mm ANF are given in Table 1.
The microspoiler mechanism consists of four sets of small

protrusions that extend and retract from the projectile body with a

prescribed motion and a set frequency. As seen in Fig. 2, the

microspoilers are placed between the rear fins of the projectile and are

oriented such that they are on the top of the projectile body.

Microspoilers add additional forces and moments acting on the

projectile and are incorporated into the equations of motion of the

projectile through the control forces and moments. The magnitude of

the forces and moments at a given time is a function of howmuch the

microspoilers are exposed.
Themechanism is designed to spin at a set ratewith a spin up period

at launch.A first-ordermodel basedon bench testing of themechanism

is used to approximate the spin rate as it reaches steady state. The

expansion for the microspoiler forces and moments is given by:

8<
:
XC

YC

ZC

9=
; � λ�ω0 � Ω0�t� τmse

−�t∕τms� − τms��
8<
:
δA
0

δN

9=
; (6)

8<
:
LC

MC

NC

9=
; � λ�ω0 � Ω0�t� τmse

−�t∕τms� − τms��
8<
:
0

δm
0

9=
; (7)

Table 1 Physical properties of

30 mm Army-Navy Finner

Physical property Value

Mass, kg 1.5887
Diameter, m 0.03
Length, m 0.3
Center of gravity—IP, m 0.135
Center of gravity—JP, m 0.0
IXX , kg ⋅m2 0.000192388
IYY , kg ⋅m2 0.00987337
IZZ, kg ⋅m2 0.00987337
IXY � IYX , kg ⋅m2 0.0
IXZ � IZX , kg ⋅m2 0.0
IYZ � IZY , kg ⋅m2 0.0

Fig. 2 The 30 mm Army-Navy Finner with microspoilers.
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The effect of the microspoilers is parameterized by six parameters:
the axial force coefficient δa, the normal force coefficient δN , the
pitching moment coefficient δm, the initial microspoiler phase ω0, the
microspoiler spin rateΩ0, and the microspoiler time constant τms. The
magnitude function λ is determined by the design of the microspoiler
mechanism and is given in Fig. 3.

III. Topology Analysis of Smart Projectile Parameter
Estimation Problem

The structure and topology of an optimization problem has a
significant impact on which optimizers will succeed and which will
struggle to solve the problem. Unlike benchmark functions that have
a defined mathematical form that can be easily visualized and
analyzed, more practical optimization problems provide very little
intuition on which optimizers are most appropriate. In the case of the
smart projectile parameter estimation problem, the high dimension-
ality and complexity of the objective function makes it a difficult
problem to analyze. However, valuable insight can be obtained by
observing the nature of this problem in a range of situations to
understand the underlying topology of the associated optimization
problem.
As an example, consider an analysis of the projectile roll

dynamics. The parameters associated with roll are the zero-yaw
rolling moment coefficient (Cl0), roll damping coefficient (Clp), and
initial roll rate (p0). In general, the roll dynamics are decoupled from
the other states as the impact of other states on the roll rate is minimal.
This allows for easy investigation of the roll dynamics. Roll data are
typicallywrapped,meaning all angles are restricted to−180° to 180°.

Sometimes roll data are unwrapped to an absolute angle. With

unwrapped roll measurements, fitting the roll parameters is very
simple and the associated optimization problem is unimodal.

However, when the roll measurements are wrapped, the topology
becomes multimodal with complex character and a number of local
minima.
To observe this phenomenon, a case is constructed with only the

roll measurements included in the cost function, restricting the
optimization problem to only the roll dynamics. The cross section is

taken aboutCl0 andp0 with the remaining parameters held fixed. The
search range forCl0 is from 0.03 to 0.06 and the search range forp0 is

from 50 to 150 rad∕s. Figure 4 shows the contours of the cost
function over these two parameters. In the figure, the box represents
the typical search bounds on these parameters. The boundary is color

coded to indicate if the gradient is pointing into or out of the search
space and the arrows represent the direction of the gradient on the

boundary. The black lines denote the nominal values of the
parameters with the global minimum at their intersection. Overall,

this landscape is highly multimodal with a few local minima within
the search bounds as well as some outside of the search space that

would attract optimizers out of the search space. The local minima
occur when the predicted trajectories come into phase with the roll

measurements for brief periods of time. This yields a low cost value
for those few measurements, with any change in the parameters

causing an increase in cost. A small, deep oval occurs around the
global minimum atCl0 � 0.04375 andp0 � 104.2 rad∕s, withmost
of the search space outside of this basin of attraction.
Another important component of the projectile parameter

estimation problem is the microspoiler dynamics. The model for
the microspoilers is given in Sec. II.C. Of particular interest is the

effect of the microspoiler spin rate (Ω0) on the cost function. For this
case, the spin rate is assumed to be constant for the entire flight,

isolating the effects of the spin rate from the time constant τms. ϕ is
again excluded from the cost function as the microspoilers do not
affect the roll dynamics. A landscape is constructed over the axial

force δA andΩ0. Typically, δA varies from−45 to−15 N, whereasΩ0

varies from 350 to 500 rad∕s. The cost contours in Fig. 5 show

multiple localminima in terms ofΩ0. Aswith the roll dynamics, these
local minima form when the predicted trajectories align with a few

measurements in each state, achieving a low cost value. While all of
the gradients point into the search space, there are two local minima

that occur in this space. Given the large basins of attraction for these
local minima, only a narrow band of about 25–30 rad∕s around the

global minimum stays within its basin. These basins are also
relatively deep with costs not much higher than the optimal solution.

Additional local minima appear asΩ0 increases outside of the search
space, which may be reached if the boundaries are not enforced.

0 100 200 300
0

0.2

0.4

0.6

0.8

1

ω (deg)

λ(
ω

)

Fig. 3 Microspoiler actuation profile.
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p 0
 (
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0.024 0.03 0.036 0.042 0.048 0.054 0.06 0.066
30

50

70

90

110

130

150

170

0.5

1

1.5

2

x 104

Example Local Minimum
Fig. 4 Contour of cost function over zero-yaw rollingmoment coefficient and initial roll rate, nominal parametersCl0 � 0.04375 andp0 � 104.2 rad∕s.
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These two cases provide a snapshot of the complex landscapes
observed in the projectile parameter estimation problem. The
presence of numerous local minima ensures difficulties for hill
climbers,which are likely to get stuck in a localminimum. For both of
the cases considered, the basin of attraction of the global minimum
covers only a fraction of the search space, necessitating reasonable
guesses of the parameters to guarantee convergence for these
algorithms. These topologies can also present issues for other
methods that may be very slow to converge or end up wandering the
search space, moving from one local minimum to the next.

IV. Meta-Optimization

The proposed framework consists of five main parts: the bank of
optimizers, the performance metric, the optimizer selection routine,
the optimizer manager, and the auto-tuning algorithm. An overview
of this framework is given by Fig. 6, which shows the general flow of
the algorithm. The basic flow of the algorithm proceeds as follows: an

optimizer is chosen, resources are allocated to the optimizer, the
optimizer runs for a period of time, and performance of the optimizer
is evaluated. This process is then repeated until a solution to the
optimization problemof sufficient quality is found or it has exhausted
its resources.

A. Bank of Optimizers

A key part of meta-optimization is the resident bank of individual
numerical optimizers that can be used. Many different optimizers,
each with numerous variants, could be selected for inclusion in the
bank of optimizers. Each optimizer is individually capable of
obtaining a solution to the given optimization problem. A mixture of
local and global search methods is used to provide maximum
diversity to the meta-optimizer. The primary category of local search
methods is considered hill climbers, where the algorithm searches for
a better solution by incrementally varying the current best solution,
gradually moving toward a local optimum. Included hill climbers are
steepest descent (SD) [27], conjugate gradient (CG) [28], and the

δA (N)

Ω
0 

(r
ad

/s
)

 

 

−51 −45 −39 −33 −27 −21 −15 −9
320

350

380

410

440

470

500

530

10

20

30

40

50

60

Example Local Minimum

Fig. 5 Contour of cost function over microspoiler axial force and spin rate, nominal parameters δA � −29 N and Ω0 � 440 rad∕s.

Initialize 
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and 
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from Optimization,
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Deploy Optimizer
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Optimizer
Manager 
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Optimizer 
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Smart Projectile Output Error Method

Select Optimizer
from Bank  
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DE SIM
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Fig. 6 Meta-optimization flow chart.
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Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [16]. It is

known that the primary drawback with hill climbers is that they are
prone to converging to local minima. To balance these methods,

global optimizers are included in the bank of optimizers. These
methods search the entire parameter space by operating on a large set

of points, continually seeking the global minimum. The global
optimizers employed here are particle swarm optimization (PSO)

[17,18], differential evolution (DE) [19], invasive weed optimization
(IWO) [29–32], and ant colony optimization (ACO) [33]. The

Nelder–Mead (Simplex) method [34,35] and tabu search [36,37] are
other metaheuristic methods used. These methods were selected as a

representative set of common optimizers with a roughly evenmixture
of local and global search methods.

B. Optimizer Performance Evaluation

A key aspect of the algorithm is an assessment of an optimizer’s
performance when employed on a particular problem. The

effectiveness of each optimizer is used to determine when it is
appropriate to change optimizers and which optimizer should be
deployed next. For the purposes of meta-optimization, a good

optimizer is one that has low computation time and high cost
reduction. Computation time is measured as the number of objective

function calls each optimizer makes during its run. A metric
combining these two measures provides a characterization of the

efficiency of the optimizer, evaluating the cost reduction per unit of
computation time. Slightly greater weight is placed on themagnitude

of the cost reductions than computation time as optimizers that
achieve greater cost reductions should be rated well. Finally, the

metric must provide reasonable evaluation of optimizer performance
throughout the optimization process and across all problems.
Based on these considerations, the function shown in Fig. 7 was

chosen as a performance metric. The overall shape of the function

was modeled on a two-dimensional sigmoid function with the output
η ranging from 0 for poor performance to 1 for good performance.

The inputs to the function are the normalized percent cost reduction
J� and the normalized computation time t�. To obtain these

measures, the percent objective function reduction J is divided by a
reference cost reduction Jref , whereas the computation time t is

divided by a reference computation time tref . These reference values
are set to represent satisfactory performance for each optimizer. The

function is designed such that the point J� � 1 and t� � 1 has a value
of 0.5, indicating neutral performance. Also, the function places a

larger weight on higher cost reductions, benefiting functions that run
longer while achieving good cost reductions.
While running, every optimizer is monitored for adequate

performance to determine if the optimizer is progressing well or has

slowed or stalled and should be stopped. Efficiency is evaluated over
a moving window of function calls. The first efficiency check is

performed after a minimum number of 125% of the window, with a
delay of half of the window before efficiency is evaluated again. This

ensures that the optimizer is given a reasonable chance to reduce the
cost and allows the optimizer to continue running for some time as

long as it is performing well. If the efficiency is above a threshold of
0.95, the optimizer will continue to run; otherwise it will continue

with probability equal to the efficiency value.

C. Optimizer Selection

The role of the optimizer selection process is to iteratively deploy a
single optimizer with preference toward methods that perform well
on the current problem. As the algorithm progresses toward the
solution, different optimizers will be more effective on the problem
than others. The optimizer selector learns from the performance of
each optimizer to ensure that appropriate optimizers are selected. The
optimizer selection takes the form of a variable structure learning
automaton where an optimizer is selected based on a probability
distribution. Probabilities are allocated according to the relative
performance of each optimizer. Each optimizer is assigned a weight
based on the efficiency of that optimizer from the last time it was
used. The probabilities for each optimizer are distributed based on the
weights according to Eq. (8):

pi �
wiPNopt

i�1 wi

(8)

The weightswi are assigned using a continuous function defined to
relate efficiency to weight given by wi � W0 �W1

����
ηi

p
. The

efficiencyvalues for eachoptimizer are also scaledusing an exponential
decay based on the time since that optimizer was last called.

D. Manager

The manager is the interface between different optimizers and
ensures that each optimizer is provided the information it needs to
operate on the problem. Given the diverse range of optimizers
employed by themeta-optimizer, the exchange between optimizers is
critical to the smooth operation of the algorithm. Each optimizer has
various inputs and outputs that may not necessarily match with the
next optimizer that will be employed. The responsibility of the
optimizer manager is to provide a centralized system for starting each
optimizer when it is selected, including providing a set of initial
points and any information needed to initialize the optimizer. This
also includes reseeding portions of the population and restarting the
optimization process when necessary.
Initialization: At the beginning of the process, the global

population is seeded with a large number of points generated based
on a uniform random distribution over the search ranges for each
parameter. This population is shared between all of the optimizers,
allowing for the exchange of information between optimizers. The
population must also be sufficiently large to provide enough points
for any optimizer.
Transition to Single-Point Optimizer: For SD, CG, BFGS, and TS,

only a single point is operated on at a time. When deployed, the best
solution from the global population is used as the starting point for
these optimizers. When the optimizer has completed, the previous
best solution is replaced with the new value obtained from the
optimizer.
Transition to Population-Based Optimizer: PSO, DE, SIM, IWO,

and ACO all require a number of points drawn from the common
population. Based on the population sizes for each optimizer, the best
points are taken from the population, guaranteeing preservation of the
global best solution found so far. Before these points are provided to
the optimizer, the diversity in the set is checked using Eq. (9).
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Fig. 7 Optimizer performance metric based on objective function reduction and computation time.
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Diversity measures how spread out or clustered the points are in the

population and is given by:

σd �
�����������������������������������PNp

i�1 �xr;i − �xr�2
Np − 1

s
(9)

where NP is the population size, xr;i �
�����������������������P

n
j�1 �xji �2

q
, and �xr �

�1∕N�PNp

i�1 xr;i [38]. For these optimizers, the diversity plays a

critical role in the ability of the optimizer to explore the parameter

space. If the diversity falls below a threshold σd;min, a portion of the

set is reseeded.After running, the set of points is returned to the global

population to be used by the next optimizer.
Reseeding of theCurrent Population:When reseeding is triggered,

themanager reseeds a percentage of the population. Twomethods are

employed to generate new points, balancing exploitation of a region

of interestwith exploration of the parameter space. The first process is

exploitation, which is performedwith a given probability. Newpoints

are seeded based on a kernel density function (KDF) built from all

previous solutions evaluated by the optimizers. As the meta-

optimizer runs, optimizers will tend toward certain regions of the

parameter space with low cost. Exploitation seeks to place more

points within these regions, aiding the optimizers in refining the cost.

The remaining points are seeded through exploration by randomly

sampling from the full search range. This approach provides the

optimizers with a highly diverse population, greatly increasing their

exploration capacity. Most important, exploration places points far

from any local minima, giving the optimizers an opportunity to

search a new region of the parameter space and potentially escape a

local minimum.
Restarting the Process: In the event that the meta-optimizer

remains locked in a local minimum for a long period of time, the

entire meta-optimization process is restarted. The frequency of

restarts is governed by a limit on the number of function calls meta-

optimization can expend while stalled in a local minimum.When the

new population is generated, an exclusion zone is placed around all

previously detected local minima to prevent any optimizer from

starting too close to the local minima and quickly returning. The

exclusion zone is given as a range about the local minimum for each

parameter. After a certain number of restarts, the meta-optimizer

stops, returning the best local minima found as the solution.

E. Auto-Tuning

The performance of any optimizer is dependent on the various

parameters that control the optimizer’s behavior. For example, PSO

has four tuning parameters: population size, inertial weight, and two

learning factor coefficients. Tuning parameters are unique to every

optimizer and can vary greatly between applications. Typically, the

selection of algorithm tuning parameters is determined by the user,

whether from good values that have been used previously or through

manual tuning of the parameters. For new optimization problems, the

best parameters may not be known initially and require a significant

amount of user effort to properly tune. Instead, auto-tuning is

performedwhere the tuning procedure is conducted onlinewithin the

meta-optimization procedure with a small chance of being called at

any given iteration. This improves reliability by adapting the

optimizers to the current problem, allowing for hands off operation of

the individual optimizers.
Auto-tuning is performed using a wandering search that gradually

explores the parameter space in a randommanner. When auto-tuning

is activated, the optimizer is run twice for 1000 function calls, once

with the current parameters and once with new parameters. This

provides a side-by-side comparison of the optimizer with the two

parameter sets over a reasonable number of function calls. Only one

parameter is tuned at a time to limit interactions between tuning

parameters, with each parameter having an equal probability of being

selected. New parameters are selected if it achieves a lower average

cost and higher diversity.

V. Simulated Trajectory Results

To evaluate the performance of this new projectile parameter
estimation method, a test case was considered using synthetic spark
range data of the ANF with microspoilers described in Sec. II.C.
These data are designed to mimic typical data obtained from a spark
range, including measurement noise andMach varying aerodynamic
coefficients. During typical projectile flight testing, a buildup
procedure is employed to accurately estimate the projectile
aerodynamic coefficients and control parameters. First, the round is
fired uncontrolled to estimate the body aerodynamic coefficients.
Next, the microspoiler parameters are estimated from controlled
shots with the body aerodynamic coefficients fixed to their estimated
values. This helps simplify the estimation problem and isolates the
effects of the microspoiler from the body aerodynamic behavior,
allowing for more accurate estimates. The results presented here
show only the controlled estimation case with estimates of the body
aerodynamic coefficients previously determined by the parameter
estimation method. For this test, the aerodynamic coefficients and
microspoiler parameters are assumed to vary linearly with Mach
number. This assumption generally holds in practice over small
ranges in Mach number.
The initial conditions for each simulated trajectory were randomly

generated based on a nominal value of h0 � 5 m and u0 �
1023 m∕s and standard deviations given in Table 2. The standard
deviation on u0 was selected to produce a sufficient distribution of
Mach numbers to properly estimate the linear aerodynamic
coefficients.ϕ0 was initialized to a random value between−180° and
180°, and ω0 was set to a random value between 0° and 360°.
Simulated measurements are recorded at the range locations of the

spark stations at the U.S. Army Research Laboratory Transonic
Experimental Facility spark range. Measurement noise is added with
standard deviation of 3 mm and 0.1° for position and angle
measurements, respectively. It is also assumed that there is a 10%
chance that a measurement cannot be made, reducing the total
number of measurements for each shot. The ϕ measurements are
wrapped to−180° and 180°. Equation (10) is used to characterize the
aerodynamic coefficients within the cost function with aMach range
from 2.75 to 3.25.

C�M� � Clo � �Chi − Clo�
M −Mlo

Mhi −Mlo

(10)

whereClo andChi are estimates of the coefficient at theMach number
limits. This range covers the potential distribution of Mach numbers
encountered in the simulated trajectories.

A. Microspoiler Parameter Estimation

The parameters associated with the microspoilers include the axial
force coefficient δa, the normal force coefficient δN , and the pitching
moment coefficient δm as well as the microspoiler mechanism initial
phase ω0, spin rateΩ0, and time constant τms. The initial phase, spin
rate, and time constant are estimated for every trajectory. Unlike the
previous cases, the trajectory prediction simulations in the cost
function were started from the first measurement. This was done to
limit the interactions between the initial pitch rate at launch and the
microspoiler pitching moment as the microspoilers produce a similar
effect at launch as a large angular velocity perturbation. Under some
conditions, changes in the estimates of the microspoiler parameters
may be matched by changes in the estimated pitch rate, yielding
minimal changes in the overall trajectory. To handle fitting the data in
this manner, a modification is needed to the microspoiler model.
When starting the simulation at the first measurement, the
microspoiler mechanism will already be spinning at some rate based

Table 2 Standard deviations of initial conditions

used to generate synthetic data

θ, rad ψ , rad u, m∕s p, rad∕s q, rad∕s r, rad∕s
0.001 0.001 35.0 2.0 1.0 1.0
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on the time since launch. The time of launch can therefore be added to
the model such that the spin rate is given by:

Ω�t� � Ω0�1 − e−��t−tinitial�∕τms�� (11)

and the phase is given by:

ω�t� � ω0 �Ω0��t − tinitial� � τmse
−��t−tinitial�∕τms� − τms� (12)

with the initial time estimated based on a least squares fit of the x and
t data.
Five trajectories were used to estimate the microspoiler

parameters. All six states were included in the cost function with
equal weighting. By beginning the trajectory prediction simulations
at the first measurement, estimates are needed for the initial
conditions of every state, resulting in 81 parameters to estimate. The
test results for this case are given in Tables 3 and 4 and the final χ2

values in Table 5.
Overall, the parameter estimation algorithm is able to accurately

estimate the microspoiler parameters with only small errors in δA and
larger errors δN . These errors may be due to the small errors in CX2

and CNα previously estimated. These parameters are also difficult to
estimate as the cost function is not sensitive to errors in these
parameters. There may also be some coupling between the initial
conditions and the microspoiler parameters, which induce additional
errors in the estimates. The estimation algorithm is also successful in

estimating the spin rate and time constant for each trajectory, which

have more indirect effects on the projectile dynamics. The χ2 values
indicate excellent fits of all states with errors on the order of the

number of measurements for every trajectory.

The trajectory results for one of the data sets used by the parameter

estimation algorithm are given in Figs. 8–13.Here, the final estimated

trajectory is shown alongside the measurements and the initial

trajectory obtained during the initialization phase of the parameter

estimation process. The initial trajectory provides an indication of

how poor the initial parameter estimates were and how much of an

improvement this method makes, with the initial trajectories quickly

diverging from themeasurements. Looking at the trajectories for each

state, the estimation algorithm does an excellent job at fitting a

trajectory to the available data as indicated by χ2. Especially for y and
h, there is little disagreement between the fit trajectory and the

measurements. Considering how well the estimation algorithm fit

these states, the large errors in δN could not have played a major role

in obtaining this fit. Figures 11 and 12 show excellent fitting of θ and
ψ , which allows for accurate estimation of δm.

Table 3 Simulated microspoiler coefficient parameter estimation results

M � 2.75 M � 3.25

Parameter Actual Estimate % Error Actual Estimate % Error

δA (N) −26.325 −27.046 2.544 −31.625 −33.495 5.914
δN (N) 67.225 84.99 26.44 80.175 73.78 7.979
δm �N ⋅m� 8.4175 8.341 0.9096 10.0825 10.249 1.648

Table 4 Simulated microspoiler mechanism parameter

estimation results

Parameter Actual Mean estimate STD estimate % Error

Ω0, rad∕s 440.0 440.44 0.5569 0.101
τms, 1∕s 0.025 0.026 0.0023 4.051

Table 5 χ 2 values for simulated active microspoiler trajectories

x y z ϕ θ ψ

Average 23.87 18.12 22.88 21.87 24.91 23.43
Standard deviation 11.19 3.575 8.074 6.973 2.546 9.551
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Fig. 8 Simulated active microspoilers inertial-Y position vs range.
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Fig. 10 Simulated active microspoilers roll angle vs range.
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Fig. 9 Simulated active microspoilers altitude vs range.
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Looking at the cost profile in Fig. 14, themeta-optimizer requires a
large number of function calls to solve this problem. A cost threshold
is defined based on an acceptable χ2 value for each trajectory. The
meta-optimizer stops when there has been no cost reduction for a
period of time after crossing the threshold. The meta-optimizer
begins with a large initial reduction over the first 200,000 function
calls, followed by some smaller reductions over the next 500,000
function calls before progress stalls almost completely after about

800,000 function calls. It takes the meta-optimizer over 800,000

more function calls to get going again when SIM is able to make

significant progress. After crossing the threshold at this time, the

meta-optimizer continues making small improvements over another

1.5 million function calls.

Figure 15 shows the total percent cost reduction for each optimizer

over this run. This is a cumulative metric that evaluates the total

contributions of each optimizer toward reducing the cost. On this run,

CG, BFGS, and SIM dominate the cost reductions with small

amounts fromSD,DE, andTS.Because of the stochastic nature of the

optimizer selection inmeta-optimization, someoptimizerswill not be

given good opportunities to reduce the cost in an individual run.

Trends between the individual optimizers could be observed over a

large number of trials. The total number of times each optimizer was

deployed is shown in Fig. 16. Overall, the optimizers were given
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Fig. 12 Simulated active microspoilers yaw angle vs range.
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Fig. 13 Simulated active microspoilers total angle of attack vs range.
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Fig. 14 Simulated active microspoilers cost profile.
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Fig. 15 Simulated active microspoilers total percent cost reduction.
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Fig. 16 Simulated active microspoilers total number of calls of each

optimizer.
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Fig. 11 Simulated active microspoilers pitch angle vs range.
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roughly equal opportunities with some preference toward CG and

BFGS, which performed well. The total number of function calls

used by each optimizer in Fig. 17 provides additional insight into the

distribution of resources between the optimizers. Here, SIM used the

most function calls as it was very effective at reducing the cost. CG

and BFGS also used a large portion of the function calls, which also

corresponds to these optimizers being deployed the most. The total

function calls used can be combined with the cost reduction to get

insight into the efficiency of each optimizer. In particular, CG and

BFGS were very efficient compared with SIM, achieving larger cost

reductions for less computation time. TS, on the other hand, was very

inefficient as it used the secondmost function calls, but only achieved

a small cost reduction.

Profiles for each of the microspoiler parameters are given in

Figs. 18–22. The first parameters to converge are the spin rates for
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Fig. 17 Simulated active microspoilers total function calls used by each

optimizer.
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Fig. 18 Simulated active microspoilers axial force profile.
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Fig. 19 Simulated active microspoilers normal force profile.
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Fig. 20 Simulated active microspoilers pitching moment profile.
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Fig. 21 Simulated active microspoilers nominal spin rate profile.
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Fig. 22 Simulated active microspoilers time constant profile.
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each trajectory with trajectories 2 and 3 the first to settle, followed by

1 and 4 after 800,000 function calls, and finally, trajectory 5 at around

1.6 million function calls, corresponding to the final jump in cost in

Fig. 14. All of the parameters make large changes at this time, with δA
and δm moving very close to their actual values. The M � 2.75
estimate of δN remains far from its actual value for the entire process,

remaining on the search boundary of 90 for a long time. Ω0 for

trajectory 1 exceeds the boundary early on, but quickly returns to the

search space. At least one parameter for each of the coefficients also

briefly reach the boundary. Finally, τms varies for each trajectory with

all of the final values within 15% of the actual values. When the

simulation is started from the first measurement, the microspoilers

are already spinning at about 75% of the max speed by the time the

simulation starts, making the impact of τms on the trajectory less than

if the simulation began at launch.

B. Individual Optimizer Comparison

It is also useful to examine a comparison between the

performance of the parameter estimation algorithm using both the

standard individual optimizers and the new method meta-

optimization. The simulated high-angle-of-attack case with

measurement noise is used for this test. Here, each optimizer was

started from the same initial point and with the same set of points.

The optimizers then run for 1,000,000 function calls or satisfy their

stopping criteria. The final cost for each of the optimizers is given in

Table 6. The cost threshold for this problem was 0.45, which DE,

ACO, and meta-optimization reach. PSO performs very poorly,

indicating poor tuning of its parameters for this problem. All of the

hill climbers reach a local minima far from the solution with SIM

stalling as well.

The cost reduction profile for each optimizer is shown in Fig. 23. In

this case, meta-optimization is the first optimizer to cross the cost

threshold and the only optimizer to reach the solution in the allotted

time. However, almost all of the other optimizers are faster at initially

reducing the cost with SIM particularly efficient. However, it quickly

plateaus after only 9000 function calls. The hill climbers also quickly

reach local minima and stop there. PSO, IWO, and TS all gradually

reduce the cost, but do not come close to the solution. Of the two

remaining optimizers, ACO is very efficient over the first 50,000

function calls, but then slows considerably as it approaches the

solution. DE takes amore gradual path, also slowing down as the cost

decreases. The meta-optimizer, on the other hand, is slightly less

efficient over the initial phase, but rapidly reaches the solution in

under 200,000 function calls.

VI. Conclusions

The process of performing parameter estimation for new projectile
configurations is a key component of the design process. Typically,
flight test data are used in addition to CFD andwind tunnel datawhen
available. Although many techniques currently exist for estimating
the aerodynamic coefficients for projectiles based on flight test data,
these methods rely on accurate initial estimates for the coefficients to
ensure convergence. For new projectile systems with complicated
control mechanisms and generally unknown parameters, a new
method is needed to perform parameter estimation. The proposed
method is based on the concept of meta-optimization where the most
efficient optimizer is deployed to solve a given problem. The meta-
optimizer uses reinforcement learning to select which optimizer to
use at a given point in the solution process. This new parameter
estimation method was used to estimate the parameters for a new
projectile equipped with microspoilers using simulated test data. The
proposed method was able to estimate the microspoiler parameters
with good accuracy when using noisy data. Residual errors in the
estimates can be attributed to the noise in the data and a lack of
observability of some parameters. This new parameter estimation
algorithm using meta-optimization has proven to be an effective tool
for analyzing new smart projectile systems.
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