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Driven by the creation of new smart projectile concepts with maneuver capability, projectile configurations with

large aerodynamic asymmetries are becoming more common. Standard linear stability theory for projectiles

assumes the projectile is symmetric, both from aerodynamic and mass properties perspectives. The work reported

here extends standard projectile linear theory to account for aerodynamic asymmetries caused by actuating canards.

Differences between standard linear and extended linear theories reported here are highlighted. To validate the

theory, time simulation of the extended linear theory and a fully nonlinear trajectory simulation are made for a

representative scenario, with excellent agreement noted. The extended linear-projectile theory offers a tool to

address flight stability of projectiles with aerodynamic configuration asymmetries.

Nomenclature

Ci = projectile aerodynamic coefficients
Cic = projectile aerodynamic coefficients due to a

canard
D = projectile characteristic length (diameter), ft
f, �,  = Euler roll, pitch, and yaw angles of projectile
g = gravitational constant, ft � s�2
In, Jn,Kn = unit vectors for a coordinate system designated

by n
IX, IT = mass moments of inertia, slug � ft2
m = projectile mass, slug
p, q, r = angular velocity components vector of projectile,

s�1

r = atmosphere density, slug � ft�3
S, �S = complex and conjugate projectile yaw rates
SLCg = station-line center of gravity, ft
SLCOP = station-line center of pressure, ft
SLCOPC = station-line center of pressure of canard, ft
SLMAG = station-line center of Magnus, ft
u, v, w = mass center velocity components in the body

reference frame, ft � s�1
jV �A=Ij � V = projectile center-of-mass velocity, ft � s�1
�xc, �yc = displacement of canard center of pressure relative

to mass center, ft
� = canard deflection angle with respect to projectile

axis

Introduction

T HERE is no doubt that there are many ways to create control-
lable forces and moments on a projectile to enable sufficiently

large changes to its trajectory for flight control purposes. A tradi-
tional and powerful way to control a projectile is through aero-
dynamic force and moment changes. Examples of the type of
mechanism include canards [1]. Since the flight control system
usually commands an inertial position change, the control mecha-
nism fixed on the body will oscillate at the roll rate of the projectile.
Many aerodynamic control mechanisms (like canards) introduce an
asymmetry into the basic configuration.

Projectile linear theory has long been an analytical workhorse in
the ballistics community. Over time, projectile linear theory has been
used for stability analysis, aerodynamic coefficient estimation using
range data, and fast trajectory prediction. Basic projectile linear
theory has been extended by various authors to handle more
sophisticated aerodynamic models [2], asymmetric configurations
includingmass properties [3,4],fluid payloads [5,6], moving internal
parts [7–9], dual spin projectiles [10,11], ascending and descending
flight [12], and lateral force impulses [13–16]. The work reported
here is along these lines and develops an extended linear theory
applicable to aerodynamically asymmetric projectile configurations.
Moreover, the paper focuses on projectiles with dithering canards
similar to that shown in Fig. 1. The extended linear theory is validated
against nonlinear six-degree-of-freedom (6-DOF) calculations for an
example projectile.

The paper begins with a description of the basic projectile
mathematical model followed by the development of the extended
linear theory. The theory is then applied to an example configuration.

Trajectory Equations of Motion

To facilitate the mathematical description of the dynamic model,
we define the vector component operator Cn and the vector-product
operator S as a skew symmetric matrix applied to any vector A as

A� InAx � JnAy �KnAz Cn�A� �

8>><
>>:
Ax

Ay

Az

9>>=
>>;

S�A� �
0 �Az Ay

Az 0 �Ax
�Ay Ax 0

2
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3
75 (1)
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These definitions provide a succinct method of writing the mathe-
matics in this paper. Also, the standard shorthand for sine and cosine
are employed: sin��� � s� and cos��� � c�.

Placing two canards, diametrically positioned on a symmetric
projectile, results in additional aeroloads that must be accounted for
in the equations of motion. For this study, two canards are located at
projectile roll angles ’� 0 and ’� �; see Fig. 1. This angular
separation �� > 2�=3 introduces rotational asymmetry [3];
therefore, it is preferable to write the dynamic equations in the
body reference frame. In fact, the analysis is more tractable if we
work in the body frame instead of the well-known nonrolling frame,
particularly if the asymmetry is fluctuating. The angular velocity of
the body frame is

! B=I � pIB � qJB � rKB (2)

The equations ofmotion relative to the inertial and body frames are

CI� _VA=I� �
c�c s�s�c � c�s c�s�c � s�s 
c�s s�s�s � c�c c�s�s � s�c 
�s� s�c� c�c�

2
4

3
5CB� _VA=I�

(3)

8<
:

_�
_�
_ 

9=
;�

1 s�t� c�t�
0 c� �s�
0 s�=c� c�=c�

2
4

3
5CB�!B=I� (4)

CB� _V�=I� �
1

m
CB�F� � S�!B=I�CB�V�=I� (5)

CB� _!B=I� � 	I
�1�CB�M� � S�!B=I�	I
CB�!B=I�� (6)

The force acting on the projectile in Eq. (6) comprises the weight
force (W), the aerodynamic force, and the canard force (C). The
aerodynamic force is split into a standard (A) andMagnus (M) force.
The combination of forces is expressed in Eq. (7):

CB�F� � CB�FW� � CB�FA� � CB�FM� � CB�FC� (7)

Equation (8) gives theweight force in the body coordinate system:

CB�FW� �mg
( �s�
s�c�
c�c�

)
(8)

Equation (9) provides the expression for the aerodynamic force that
acts upon the projectile at the aerodynamic center of pressure:

CB�FA� � �
�

8
�V2D2

8<
:
CX0 � CX2�v2 �w2�=V2

CY0 � CNAv=V
CZ0 � CNAw=V

9=
; (9)

Equation (10) expresses the Magnus force acting on the projectile
at the Magnus force center:

CB�FM� �
�

8
�V2D2

( 0
pDCNPAw

2V2

�pDCNPAv
2V2

)
(10)

The projectile forward velocity is given in Eq. (11):

V �
����������������������������
u2 � v2 � w2

p
(11)

The moment acting on the projectile in Eq. (6) comprises the
moment due to the standard aerodynamic force (A), the moment due
to the Magnus aerodynamic force (M), the unsteady aerodynamic
moment (UA), and the canard moment (C), as shown in Eq. (12):

CB�M� � CB�MA� � CB�MM� � CB�MUA� � CB�MC� (12)

The moments due to the aerodynamic and Magnus forces are
expressed in Eq. (13):

CB�MA� � S�R�!Cp�CB�FA� CB�MM� � S�R�!CM�CB�FM�
(13)

The unsteady aerodynamic moments acting on the projectile are
expressed in Eq. (14):

CB�MUA� �
�

8
�V2D3

8<
:
CDD � pDCLP

2V
qDCMQ

2V
rDCMQ

2V

9=
; (14)

The coefficients used in this aerodynamic model are specific
functions of the projectile Mach number. For fin-stabilized projec-
tiles, the classic Magnus force and moment associated with spin-
stabilized projectiles are typically ignored since its effect is rather
small for slowly rolling projectiles. AMagnusmoment with physical
mechanisms specific to fin-stabilized projectiles (more properly
expressed as a dynamic sidemoment due to spin and angle of attack),
however, may exist [17]. Expressions for the canard force XB�FC�
and canard moment XB�MC� are derived in the following.

Canard Force and Moment Model

Consider the change in the aerodynamic loads on a projectilewhen
the pitch angle of a canard lifting surface is deflected. Figure 2 has a
schematic of the canard configuration.

This analysis is for two canards located at projectile roll angles
’� 0 and ’� � such that their respective centers of pressures are

CB�R�!C1� �

8<
:
�xc
�yc
0

9=
;; CB�R�!C2� �

8<
:

�xc
��yc

0

9=
; (15)

The relative aerodynamic velocities of the two canard lifting
surfaces are calculate from

CB�VC1=I� � CB�V�=I� � S�!B=I�CB�r�!C1�
CB�VC2=I� � CB�V�=I� � S�!B=I�CB�r�!C2� (16)

Now, generate the coordinate transforms frombody coordinates of
the canard coordinates with deflection angle �:

Fig. 1 Asymmetric airframe with or without control mechanism.

Fig. 2 Configuration of projectile with canard.
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8>><
>>:

Ic1

Jc1

Kc1

9>>=
>>;� T1

8>><
>>:

IB

JB

KB

9>>=
>>;�

c� 0 �s�
0 1 0

s� 0 c�

2
64

3
75
8>><
>>:

IB

JB

KB

9>>=
>>;; �� 0

8>><
>>:

Ic2

Jc2

Kc2

9>>=
>>;� T2

8>><
>>:

IB

JB

KB

9>>=
>>;

�
c� 0 �s�
0 1 0

s� 0 c�

2
64

3
75

1 0 0

0 �1 0

0 0 �1

2
64

3
75
8>><
>>:

IB

JB

KB

9>>=
>>;; �� � (17)

Therefore, the relative velocities of the lifting surfaces written in
local canard coordinates have the form

CC1�VC1=I� � T1CB�VC1=I�; CC2�VC2=I� � T2CB�VC2=I�
(18)

Construct the angle of attack for each canard �j as

tan��1� �
KC1 � CC1�VC1=I�

k�1 � IC1��CC1�VC1=I�k

tan��2� �
KC2 � CC2�VC2=I�

k�1 � IC2��CC2�VC2=I�k
(19)

The axial Xj and normal Nj aerodynamic forces acting on the
lifting surfaces of the canards are modeled as

CCj�FAj� �

8<
:
Xj
0

Nj

9=
;� �8 �jCB�VC1=I�j2D2

8<
:
CX0C � CX2C�2j

0

CNAC�j

9=
;
(20)

Thus, the forceFC andmomentMC due to the two canards take the
form

CB�FC� � T�11 CC1��FA1� � T�12 CC2��FA2�
CB�MC� � S�r�!C1�T�11 CC1��FA1� � S�r�!C2�T�12 CC2��FA2�

(21)

Equation (21) shows net moment results from the canard
asymmetry since the angles of attack on each canard are different.
Thismeans that, duringflight, the canardsmay contribute to transient
coning motion when jMCj is sufficiently large.

Extended Projectile Linear Theory

The usual assumptions corresponding to projectile linear theory
are products formed by transverse components of CB�V�=I�,

CB�VCj=I�, CB�!B=I�, and � are negligible, plus axial components
IB � CB�V�=I� � V and IB � CB�!B=I� � p are constant. These
assumptions lead to a fourth-order initial value system with constant
coefficients and time-dependent driving terms:8>>>>><
>>>>>:

_v

_w

_q

_r

9>>>>>=
>>>>>;
�

� AV
D

p 0 �V
�p V�V2�A�

D
V�V3 � 1� 0

BV
D2

�M2�C�V
D2

�M3�E�V
D

� FV�pD
D

� CV
D2

BV
D2

FV�pD
D

EV
D

2
666664

3
777775

8>>>>><
>>>>>:

v

w

q

r

9>>>>>=
>>>>>;

�

8>>>>><
>>>>>:

sin�pt� g
D

cos�pt� g
D
� ��D2V2Cnac

4m
�

���xcD2V2Cnac
4IT

�

���yc2pD2VCnac
4IT

�

9>>>>>=
>>>>>;

(22)

The full expressions for the matrix are lengthy, and they are
provided in the Appendix, which also shows the contributions due to
asymmetry are (V2,V3,M2,M3). When these contributions are equal
to zero, no asymmetry exists, and the system in Eq. (22) returns to the
familiar linear theory describing symmetric projectiles written in the
body frame. The eigenvalues of the system above split into two
conjugate pairs: a fast mode and a slow mode denoted as SF and SS
(SF;S � �F;S � i _�F;S), respectively. Dynamic stability of Eq. (22) is
determined by the real parts of these eigenvalues. The linear
combination of damped and undamped sinusoid terms forming the
solution of Eq. (22) are obtained using the Laplace transform
followed with employing the Mellin inverse formula [18]. The
particular canard time-dependent deflection angle � used to generate
in this report has the form

���sin�kt�; �� 10
 (23)

Model Validation

To establish the utility of the extended projectile linear theory
developed above, time domain solutions from the linear model
[Eq. (16)] are compared with time domain calculations of the
nonlinear model [Eqs. (4–7)]. The particular example given here has
mass properties m� 1:2680 slug, moments of inertia IX � 2:449 �
10�2 slug ft2 and IT � 0:51569 slug � ft2, and air density ��
2:38 � 10�3 slug � ft�3. The spin rate p� 75:4 s�1, and the forward
velocity V � 558:0 ft � s�1. This projectile’s geometry character-
istics areD� 0:343521 ft, SLCOP � 0:7284 ft, SLMAG � 0:2390 ft,
SLCG � 1:17787 ft, �xc� 1:2434 ft, and �yc� 0:134 ft. The
projectile aerocoefficients are CNA � 5:8150, CNAC � 0:4875,
CYPA ��28, and CMQ ��151:91, and all reference areas are
based on diameter D.

Comparisons of linear theory to nonlinear 6-DOF calculations,
along with data from flight experiments, are shown in Figs. 3–6.
Figure 3 compares linear theory to 6-DOF canard moment ratios
MCY=MCYMAX

as functions of time for 5:0 s< t < 8:0 s. The scale

Fig. 3 Comparison ofMCY=MCYMAX
vs time.
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factor MCYMAX
is the maximum value of MCY of the linear theory

calculations of the duration of the flight 0 s< t < 30 s, for which the
canard activation frequency is chosen as k� p to effectively
maximize projectile range (glide).

A similar chart showing the canard force ratio FCZ=FCZMAX
is

given in Fig. 4, and the scale factor FCZMAX
is the maximum value of

the linear FCZ over the 30 s flight.
The variables in Figs. 3 and 4 are chosen for comparison since the

nonlinear effects due to the 6-DOF are most dissimilar for the canard
force andmoment. A chart comparing linear and 6-DOF calculations
of the similarly scaled q=q

MAX
ratios is shown in Fig. 5

One way to view the angular motion of this asymmetric projectile
is to consider the time dependence of �, �, defined as follows [3]:

�
�
�

�
�

8>><
>>:
tan�1

�
cos�pt�v�sin�pt�w

V

�

tan�1
�

cos�pt�w�sin�pt�v
V

�
9>>=
>>; (24)

Figure 6 has a chart for flight times t � 30 s comparing linear
theory and 6-DOF calculations along with flight-test data of the
projectile modeled in the above calculations [19].

Evidently, linear theory capturesmost of the physics governing the
angular motion of this projectile when subjected to two activating
canards configured at �� 0 and �� �. The magnitude of transitory
coning behavior for t � 30 s is caused by the canard moments MC

and the body moment B. Essentially, the canards induce the angle of
attack in the body. At the angle of attack, the Magnus moment of the
body contributes to the transient coning along with the canard
actuation. In the plot of Fig. 6, theMagnusmoment appears as nearly
circular orbits that complete a full revolution at the projectile yaw

rate. The perturbations in the orbits of Fig. 6 are due to the faster
canard actuation frequency. The canard actuation-induced angle of
attack is near 3
, as seen in Fig. 6. The experimental and linear
theory-based transient coning magnitude is around 3
, and the
angular motion perturbations due to canard actuation at the roll rate
are evident in Fig. 6.

The steady-state coning motion corresponding to the particular
solution of Eq. (22) is attained for flight times� 200 s due to the size
of j�F;Sj. This steady-state motion is an offset ellipse centered at the

Fig. 4 Comparison of FCZ=FCZMAX
vs time.

Fig. 5 Comparison of q=q
MAX

vs time.

Fig. 6 Comparisons of transient coning motions for time � 30 s.
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geometric center of Fig. 6 with vanishing small radii (analysis not
presented here since the expressions are judged to be too long).

Stability Analysis

Numerical values of fast and slow eigenvalues SF;S are presented
as functions of projectile spin rate p, given in Figs. 7 and 8. The slow
mode SS is real and positive for 10:2 s�1 � p � 13:3 s�1, which
indicates dynamic instability; see Fig. 5 of [3]. As p increases,
p � 79:0 s�1, causes the fast mode contribution to grow unstable.

Another way to present the numerical values of fast and slow
eigenvalues SF;S is to form a root locus plot for changing projectile
spin rate p, shown in Fig. 9.

These eigenvalues provide a tool for addressing dynamic stability
of the asymmetric canard configuration modeled in this effort.

Sinusoidal driving terms representing canard actuation [Eq. (23)]
cause component solutions of Eq. (23) to have terms with form

G�t�
� _�F;S � k�2 � �2F;S

G�t� represents a time-dependent numerator (25)

Thus, in the event j�F;Sj � 1, k! j _�F;Sjmaypotentially generate
flight instability when the canards are actuated as sinusoids. Ametric
to demonstrate this potential problem is defined in Eq. (26):

Max
�����������������
�2 � �2

p
8 t 2 �0; 30 s� (26)

Figure 10 shows a plot of this behavior where the spin rate is held
constant p� 75:4 s�1 for varying values of k.

Apparently, when the frequency k is in the neighborhood of the

fast mode, the frequency _�F causes the strongest destabilizing effect.

Fig. 7 Fast and slow real roots �FAST;SLOW as functions of spin rate p.
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)

Fig. 8 Fast and slow real roots �FAST;SLOW as functions of spin rate p.

Fig. 9 Fast and slow roots S parameterized by projectile spin rate p.

0

20

40

60

80

100

120

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

D
eg

re
es

( αα2 + ββ2)1/2 at time t=30s, p = 75.4 s-1

Slow Mode

Fast Mode

Fk

Fig. 10 Metric resonance vs k= _�F.
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Conclusions

An extension of the familiar linear-projectile theory for symmetric
and asymmetric projectiles has been formulated and solved. This
extension accounts for configuration asymmetries caused by two
actuating canards placed at roll angles �� 0 and �� �. The
documentation shows that a wide class of configuration asymmetries
can be addressed by the techniques given in this report. One of the
results obtained in this paper presents a way to analyze the dynamic
stability of projectiles exhibiting asymmetries. This can have an
important impact on the design of projectiles. The importance of
canard actuation focuses on a potential problem causing flight
instability when the actuation frequencies are too close to one of the
modal yawing frequencies. A spinning projectile with two canards
activated as sinusoids was shown to contribute to transient coning
motion when this additional moment was sufficiently large. The
closed-form solutions discussed in this report were shown to
compare well with standard 6-DOF calculations. Postprocessing
solutions given here to obtain all state components of asymmetric
projectiles may prove useful in developing firmware. The asym-
metric linear theory reduces to the familiar linear symmetric theory
when the asymmetries vanish.

Appendix

A� ��D
3CNA

8 m
B� ��pD

5CYPA�SLMAG � SLCG�
16ITV

C� ��D
4CNA�SLCOP � SLCG�

8IT
E� ��D

5CMQ
16IT

F� pDIx
ITV

V2 ��
��D3CNAC

4m
V3 �

��D2�xcCNAC
4m

M2 �
��D4�xcCNAC

4IT
M3 ��

��D3�xc2CNAC
4IT
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