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Nomenclature
b̄, c̄, d̄ = parafoil span, parafoil chord, and control

flap width
CD0, CDα2, CDδa = aerodynamic drag coefficients for parafoil

and payload
CL0, CLα, CLδa = aerodynamic lift coefficients for parafoil

and payload
Clφ, Clp, Clδa = aerodynamic roll coefficients for parafoil

and payload
Cm0, Cmα, Cmq = aerodynamic pitch coefficients for parafoil

and payload
Cnr , Cnδa = aerodynamic yaw coefficients for parafoil

and payload
FA = aerodynamic force components in body

reference frame
FW = combined weight force components of

parafoil and payload in body frame
Hp = prediction horizon
IT = inertia matrix of combined parafoil and

payload system with respect to its
mass center

mT = combined mass of payload and parafoil
p, q, r = components of angular velocity of system

in body reference frame
Sω = skew symmetric cross-product operator of

parafoil and payload system
angular velocity

T = transformation matrix from inertial to body
reference frame

VA = total aerodynamic velocity of parafoil and
payload system

x, y, z = components of position vector of mass
center in inertial frame

ẋ, ẏ, ż = components of velocity vector of mass
center in inertial frame

δbias = control bias
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σ = intersect parameter defining second point
in desired path

φ, θ, ψ = Euler roll, pitch, and yaw angles

I. Introduction

P ARAFOIL and payload systems are lightweight, fly at low
speed, provide soft landing capability, and are compact be-

fore deployment. The dynamics are sufficiently slow so that expert
paraglider pilots can track a desired trajectory and attain accurate
ground impact. Subconsciously, these pilots continuously project
the trajectory forward in time and compare the results with the de-
sired path. The error between the projected and desired path is used
to determine control action. A control strategy that mimics how hu-
man pilots control paragliders is model predictive control. In model
predictive control, a dynamic model of the system is used to project
the state into the future and subsequently use the estimated future
states to determine control action. It is a common control technique
in the process control industry. The basic theory is detailed by Iko-
nen and Najim.1 Currently, model predictive control is being applied
to a wide variety of problems, spanning many different industries.
Mei et al.2 studied vibration reduction of a tall building experiencing
wind excitation using model predictive control and linear quadratic
Gaussian control strategies. They found that the model predictive
control scheme performed well and was robust to uncertainty in
building stiffness. Tsai and Huang3 used a model reference adaptive
predictive controller for a variable-frequency oil-cooling machine
used with a dynamically complex machine tool. Kvaternik et al.4

developed a generalized predictive controller for tilt rotor aeroelas-
tic stability augmentation in an airplane mode of flight. When the
model predictive control strategy was used, significant increases
in damping of aircraft flexible vibration modes were achieved in a
wind-tunnel test.

Substantial research has been reported on the dynamics of
parafoils and payloads, beginning with that of Ware and Hassell,5

who investigated ram-air parachutes in a wind tunnel. Flight tests
have been more recently reported on NASA’s X-38 (Refs. 6 and
7) parafoil, investigating the lateral and longitudinal aerodynamics
for large-scale parafoils. Parafoil dynamic model complexity varies
significantly in the literature with simple three- and four-degrees-
of-freedom (DOF) models by Jann,8 a six-DOF model by Mortaloni
et al.,9 and a nine-DOF model from Slegers and Costello.10 The ac-
curacy of all parafoil dynamic models relies on estimation of aero-
dynamic coefficients and subsequent verification of the model with
flight data. System identification of parafoil aerodynamics varies
significantly in the literature with Hur and Valasek11 using an ob-
server kalman filter identification methodology, Rogers12 using an
extended Kalman filter, and Jann8 using a Gauss–Newton optimiza-
tion method.

The work reported here creates a model predictive control strat-
egy for a parafoil and payload aircraft. The standard model pre-
dictive control strategy is modified to account for brake deflection
bias, which is significant because subtle changes in the parafoil
canopy that naturally occur from flight to flight cause significant
brake deflection bias. A simplified six-DOF model is presented
and used as a basis for a reduced-order linear model used in the
model predictive control strategy. The reduced-order linear model
maintains only information that is most significant to the perfor-
mance of the controller. System identification is performed using
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a recursive weighted least-squares method. Performance of the au-
tonomous flight control system is shown through flight tests of the
system under a variety of conditions.

II. Model Predictive Control
Consider a discrete system described in state-space form:

xk + 1 = Axk + Buk + D, yk = Cxk (1)

Assume that the system matrices A, B, C , and D are known and
that xk is the state vector, uk is the control input, and yk is the output
at time k. The discrete model can be used to estimate the future
state of the system. Under the assumption that a desired trajectory
is known (wk), an estimated error signal ẽk = wk − ỹk is computed
over a finite set of future time instants called the prediction horizon
Hp . The tilde is used to represent an estimated quantity. In model
predictive control, the control computation problem is cast as a
finite time discrete optimal control problem. To compute the control
input at a given time instant, a quadratic cost function is minimized
through the selection of the control history over the control horizon.
The cost function can be written as

J = (W − Ỹ )T (W − Ỹ ) + U T RU (2)

where

W = [
wk + 1 wk + 2 · · · wk + Hp

]T
(3)

Ỹ = KC Axk + KC ABU + KC AD (4)

U = [
uk uk · · · uk + Hp − 1

]T
(5)

and R is a symmetric positive semidefinite matrix of size Hp:

KC A =






C A

C A2

...

C AH P




 (6)

KC AB =






C B 0 0 0 0

C AB C B 0 0 0

C A2 B C AB C B 0 0
...

...
. . . 0

C AHp − 1 B · · · C A2 B C AB C B






(7)

KC AD =







C D

C AD + C D

C A2 D + C AD + C D
...

C AHp − 1 D + C AHp − 2 + · · · + C D







(8)

Equation (4) is substituted into Eq. (2), resulting in the cost function
in Eq. (9) that is in terms of the system state xk , desired trajectory
W , control vector U , and system matrices A, B, C, D, and R,

J = (W − KC Axk − KC ABU − KC AD)T (W − KC Axk

− KC ABU − KC AD) + U T RU (9)

The control U , which minimizes Eq. (9), is

U = K (W − KC Axk − KC AD) (10)

where

K = (
K T

C AB KC AB + R
)−1

K T
C AB (11)

Equation (10) contains the optimal control inputs over the entire
control horizon; however, at time k, only the first element uk is
needed. The first element uk is extracted from Eq. (10) by defining

K1 as the first row of K . The optimal control over the next time
sample becomes

uk = K1(W − KC Axk − KC AD) (12)

where calculation of the first element of the optimal control sequence
requires the desired trajectory W over the prediction horizon and
the current state xk .

III. Parafoil and Payload Model
The combined system of the parafoil canopy and the payload is

represented with six DOF, including three inertial position compo-
nents of the system mass center as well as the three Euler orientation
angles of the parafoil and payload system. Kinematic equations of
motion for the parafoil and payload system are






ẋ

ẏ

ż





= T T






u

v

w





(13)






φ̇

θ̇

ψ̇





=




1 sφ tθ cφ tθ
0 cφ −sφ

0 sφ/cφ cφ/cθ










p

q

r





(14)

The matrix T represents the transformation matrix from an inertial
reference frame to the body reference frame:

T =




cθ cψ cθ sψ −sθ

sφsθ cψ − cφsψ sφsθ sψ + cφcψ cθ sφ

cφsθ cψ + sφsψ cφsθ sψ − sφcψ cφcθ



 (15)

The common shorthand notation for trigonometric functions is em-
ployed where sin(α) ≡ sα, cos(α) ≡ cα , and tan(α) ≡ tα . The dy-
namic equations of motion are






u̇

v̇

ẇ





= 1

mT
(FA + FW ) − T SωT T






u

v

w





(16)






ṗ

q̇

ṙ





= I −1

T



MA − Sω IT






p

q

r








 (17)

where

Sω =




0 −r q

r 0 −p

−q p 0



 (18)

IT =




IX X 0 IX Z

0 IY Y 0

IX Z 0 IZ Z



 (19)

I −1
T =




IX X I 0 IX Z I

0 IY Y I 0

IX Z I 0 IZ Z I



 (20)

The weight force vector in the body reference frame is

FW = mT g






−sθ

sφcθ

cφcθ





(21)

The aerodynamic forces acting at the system mass center and the
aerodynamic moments about the system mass center are given in
Eqs. (22) and (23), respectively. Clφ is introduced to eliminate the
center of pressure location from the dynamic equations while main-
taining the parafoils tendency to glide with no roll during neutral
control.
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FA = 1

2
ρSVA(CL0 + CLαα + CLδaδa)






w

0

−u






− 1

2
ρSVA

(
CD0 + CDα2α

2 + CDδaδa

)





u

v

w





(22)

MA = 1

2
ρSV 2

A






Clφ b̄φ + Clpb̄2 p

2VA
+ Clδaδa b̄

d

Cm0c̄ + Cmα c̄α + Cmq c̄2q

2VA

Cnr b̄2r

2VA
+ Cnδa b̄δa

d̄






(23)

Model predictive control requires a linear model of the states to
be controlled. The desired states to control in a parafoil and pay-
load system are the inertial positions x and y. Equations (13–23)
describing the parafoil and payload system are nonlinear and, to
apply standard model predictive control, must be linearized. Con-
sider a parafoil and payload in a steady turn performing a helix as
it falls. All of the states excluding the inertial positions x, y, and z
and Euler yaw angle reach a steady state. The inertial positions do
not appear in any of the equations of motion. However, yaw angle
appears in Eq. (13) relating inertial velocities to body velocities. A
linear six-DOF model that accurately represents the inertial position
of the nonlinear model must constrain the yaw angle to only small
changes about a nominal yaw angle. Constraining the yaw angle
in such a way limits the model to nearly straight flight and is not
sufficient for general flight. Observation of a parafoil and payload
system shows that the velocities u, v, and w expressed in the body
reference frame are nearly constant under typical flight conditions.
If a reduced state [φ ψ p r ]T is considered for model predictive
control purposes, then the equations for [φ̇ ψ̇ ṗ ṙ ]T describing the
rolling and pitching in Eqs. (14) and (17) can be linearized assuming
that the aerodynamic velocity VA is constant. Euler pitch angle is
not included in the reduced state because after linearization pitch
angle becomes uncoupled from both rolling and yawing motion. The
equations for the reduced states are linearized about the steady state:





δφ̇

δψ̇

δ ṗ

δṙ






=







0 0 1 0

0 0 0 1/cθ0

ρSb̄V 2
A IX X I Clφ

2
0

ρSb̄2VA IX X I Clp

4

ρSb̄2VA IX Z I Cnr

4

ρSb̄V 2
A IX Z I Clφ

2
0

ρSb̄2VA IX Z I Clp

4

ρSb̄2VA IZ Z I Cnr

4







×






δφ

δψ

δp

δr





+







0

0

ρSb̄V 2
A (Clδa IX X I + Cnδa IX Z I )

2d̄

ρSb̄V 2
A (Clδa IX Z I + Cnδa IZ Z I )

2d̄







{δa}

+







0

0

ρSb̄V 2
A IX Z I

2d̄

ρSb̄V 2
A IZ Z I

2d̄







{δbias} (24)

A typical desired trajectory of a parafoil and payload system con-
sist of points in the x–y plane, and, according to Eq. (1), the desired
output must be a linear combination of the linear model states. To use
the linear model described in Eq. (24) for model predictive control,
the desired trajectory in the x–y plane must be mapped into a desired
trajectory in terms of the reduced states [φ ψ p r ]T . A straight-
forward mapping is to assume that the side velocity v is small, that
the parafoil is traveling in the direction of its heading ψ , and that
the forward velocity is constant. A desired path defined by points
can then be converted to desired heading angle using parametric
Lagrange interpolating polynomials.

IV. Test System
The parafoil and payload system used in all testing is shown in

Figs. 1 and 2 with the physical parameters in Table 1. A test flight
commences by launching the system from the ground. A 10-in. pro-
peller powers the test system to altitudes of from 250 to 400 ft,
where the propeller is stopped and gliding commences, lasting ap-
proximately 20 s for every 100 ft of altitude.

Full-state measurement of the parafoil required in the optimal
control sequence is achieved through a sensor package that in-
cludes three single-axis gyroscopes, a three-axis accelerometer, and
a three-axis magnetometer. Inertial positions x and y required in
the mapping of the desired x–y path into a desired yaw angle are
obtained from a wide area augmentation system enabled global po-
sitioning satellite receiver. The sensors are supplemented with a
wireless transceiver that transmits data from the parafoil and re-
ceives commands during flight. An operator-controlled transmitter
switches control of the parafoil to one of three modes: manual, es-
timation, or autonomous. Manual mode allows the operator to fly
the parafoil manually. Estimation mode allows estimation of linear

Table 1 Parafoil and payload physical parameters

Variable Value Unit

ρ 0.0023784722 slug/ft3

Weight 2.0 lbf
S 7.5 ft2

b̄ 4.25 ft
d̄ 2.0 ft
IX X 0.1357 slug/ft2

IY Y 0.1506 slug/ft2

IZ Z 0.0203 slug/ft2

IX Z 0.0025 slug/ft2

IX X I 7.3845 ft2/slug
IY Y I 6.6423 ft2/slug
IZ Z I 49.442 ft2/slug
IX Z I −0.9032 ft2/slug
VA 21.6 ft/s

Fig. 1 Payload.
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Fig. 2 Parafoil and payload system.

model aerodynamic coefficients required for model predictive con-
trol. Autonomous mode controls the parafoil using the model pre-
dictive control law.

V. Identification of Aerodynamic Coefficients
Application of the reduced-order model requires knowledge of

five constant aerodynamic coefficients, Clφ, Clp, Clδa, Cnr , and Cnδa ,
and the constant bias term δbias. The six parameters are estimated
using recursive weighted least-squares estimation, where zi are mea-
surements, xi are parameters to be estimated, and ni is zero mean
measurement noise:

zi = Hi x + ni (25)

The recursive weighted least-squares estimation to Eq. (25) is given
in Eqs. (26) and (27), where Pi is the error covariance estimate of
the parameters at measurement i and Q is the measurement noise
covariance,13

x̂i = x̂i − 1 + Pi H T
i Q−1(zi − Hi x̂i ) (26)

Pi = Pi − 1 − Pi − 1 H T
i

(
Q + Hi Pi − 1 H T

i

)−1
Hi Pi − 1 (27)

The matrix Hi yields a linear relationship between the parameters
to be estimated, and measurements are acquired by linearizing δp
and δr in Eq. (24):

Hi = ρSb̄V 2
A

2










IX X I φi IX Z I φi

IX X I
b̄ pi

2VA
IX Z I

b̄ pi

2VA

IX X I
δa

d̄
IX Z I

δa

d̄

IX Z I
b̄ri

2VA
IZ Z I

b̄ri

2VA

IX Z I
δa

d̄
IZ Z I

δa

d̄
IX Z I

d̄

IZ Z I

d̄










T

The recursive weighted least-squares estimation requires differenti-
ation of measured roll and yaw rates. The control sequence used in
parameter identification was chosen to be sinusoidal to ensure that
numerical differentiation of roll and yaw rates produced significant
signals. Measured roll and yaw rates are processed with a zero-phase
digital filter before differentiation. The recursive weighted least-
squares estimation is initialized with P1 as a 6 × 6 diagonal matrix
with 0.05 along the diagonal and Clφ, Clp, Clδa, Cnr , Cnδa , and δbias

as −0.1, −0.5, 0.1, −0.1, 0.1, and 0.0, respectively. The measure-
ment noise covariance Q was set as a 2 × 2 diagonal matrix with

Table 2 Estimated model coefficients

Parameter Value

Clφ −0.0100
Clp −0.0520
Clδa 0.0021
Cnr −0.0850
Cnδa 0.0010
δbias −0.0001

Fig. 3 Comparison of measurement and model.

Fig. 4 Lagrange approximating polynomial.

Q1,1 = 0.00475 and Q2,2 = 0.0005. The estimated aerodynamic co-
efficients, Clφ, Clp, Clδa, Cnr , Cnδa , and δbias from the flight data are
given in Table 2. The discrete time linear reduced-order model is
verified by comparing simulated results using the estimated aerody-
namic coefficients with measured flight data. Figure 3 shows that the
reduced-order model is able to capture the fundamental dynamics
of the parafoil and payload.

VI. Model Predictive Control Results
The prediction of desired heading angle with third-order Lagrange

interpolating polynomials is accomplished using four desired path
points. The first point is defined as the current position of the parafoil
and payload system. The second point is defined as the location along
the desired path that is a distance σ ahead of the current position
and is called the intersect parameter. The third and fourth points are
the next two desired path points. Figure 4 shows a desired path and
the Lagrange interpolating polynomial found. The update rate of
the model predictive controller was chosen to be 1 s, and the linear
model is converted to a discrete time system of the form in Eq. (1)
with a sampling period of 1 s. The discrete time system matrices
A, B, C, and D required for the model predictive controller are

A =






0.5243 0 0.5823 0.0100

0.0120 1.0000 0.0125 0.1372

−0.7589 0 0.1360 0.0047

0.0056 0 0.0148 0.0009




 (28)
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Fig. 5 Controlled straight path (no wind).

Fig. 6 Controlled straight path (wind).

Fig. 7 Controlled S path (no wind).

B =






0.0494

0.0505

0.0794

0.0591




 (29)

C = [0 1 0 0] (30)

D =






0.0001

−0.0052

0.0000

−0.0060




 (31)

The matrix R penalizing control magnitude in the optimal control
sequence is selected as an Hp × Hp matrix with 0.35 on the diag-
onal and zeros everywhere else. Results for the model predictive
controller are shown in Figs. 5–7 with Hp = 10 and σ = 100 ft.
Figure 5 shows the measured path of the parafoil and payload com-
pared to a desired straight path with no wind; the markers designate
5-s intervals with the first marker being the initial position at 0. The
control sequence is shown in Fig. 8. Control is initiated with the
parafoil and payload initially traveling away from the desired path
and 40 ft offtrack. The initial control response is large and negative,
corresponding to left braking and negative, crossrange. The parafoil
has a maximum error of 75 ft at 100 ft downrange, then overshoots
the desired by path by 39 ft at −510 ft downrange before a final error
of 9 ft at impact. Figure 6 shows the measured path of the parafoil

Fig. 8 Control.

and payload compared to the desired straight path and control with
a 12-ft/s crosswind from positive to negative crossrange. Control is
again shown in Fig. 8 and is initiated with the parafoil and payload
initially traveling away from the desired path and 100 ft offtrack.
The parafoil has a similar oscillatory response with a maximum er-
ror of 119 ft at 230 ft downrange as it overshoots the desired path.
The parafoil turns back toward the desired path and comes within 18
ft before the wind pushes it farther away. The final error at impact
is 6 ft. The larger error from the crosswind is due to the differ-
ence in measured yaw angle and heading angle because of parafoil
sideslip. Figure 7 shows the performance of the model predictive
controller when tracking the more complicated S-shaped path. Con-
trol is initiated when the parafoil and payload are 210 ft offtrack.
The maximum error during the flight is 45 ft at 550 ft downrange
and −550 ft crossrange. The model predictive controller is able to
predict the required control input so that the parafoil and payload
system are able to achieve close proximity to the desired points as
they are passed.

VII. Conclusions
Model predictive control is a natural way to control a parafoil

and payload because it mimics the process that a pilot controlling a
paraglider estimates both the path and control sequence to achieve a
desired outcome. The work reported here employs model predictive
control for autonomous control of a parafoil and payload system.
To support the flight control law, a reduced-state linear model was
created that uses roll angle, yaw angle, body roll rate, and body yaw
rate of the parafoil and payload system. Application of the reduced-
order model requires knowledge of five constant aerodynamic coef-
ficients, Clφ, Clp, Clδa, Cnr , and Cnδa , and a constant bias term δbias.
A recursive weighted least-squares estimation is used to estimate the
six parameters. The estimated parameters and reduced-state model
is compared with flight data, and it is shown that they adequately
model the parafoil and payload system. To use the reduced-state lin-
ear model, the desired x–y trajectory is mapped into desired yaw an-
gles using Lagrange interpolating polynomials assuming a constant
aerodynamic velocity. Three exemplar autonomous flight tests are
used to show that model predictive control is an effective way to con-
trol autonomously the trajectory of a parafoil and payload system.
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