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Introduction used to shed light on intuitive and subtle factors that influence

- . . swerve response of a projectile exposed to lateral impulsive loads.
The continuing development of microelectromechanical sys-

tems(MEMS) is pointing to the possibility of mounting complete .
sensor systems on medium- and small-caliber projectiles as parbgpiectile Dynamic Model

an actively controlled smart munition. Two important technical It is well known that the motion of most projectile configura-
challenges in achieving this goal are the development of smalbns can be captured using a rigid body 6 degrees of freedom
rugged sensor suites and control mechanisms. With regard to tymamic mode[4,5]. The degrees of freedom include three posi-
development of control mechanisms, several concepts hai@n components of the mass center of the projectile as well as
emerged that produce controllable impulsive lateral forces ontlzree Euler orientation angles of the body. Figures 1 and 2 show
projectile body. For example, Harkins and Broyii considered schematics of the dynamic model degrees of freedom. The equa-
the use of a set of lateral pulse jets or squibs to reduce dispersiigiis of motion are provided in Eqél—4).

of a rocket by firing squibs to minimize projectile pitch and yaw

! _ . ; CoCy  SuSeCy—CySy CySyCytSyS
rate. For the notional cases evaluated, dispersion was reduced by a | X LA et A S et A A N

factor of 5. Jitpraphai and Costell@] considered the same type Y =|CoSy SgSeSyTCyCy CySeSy—SeCy || U r; (1)
of control mechanism and used a trajectory tracking flight control z —s, S4Co CyCo
system to improve impact point performance of a direct fire rocket
equipped with a ring of squibs. Amitay et 4B] considered the ® 1 osgty Cylo | (p 1.0 t|(p
use_of synthetic_jet_ actuators as a control_mechanism on lifting! o4 —| 0 Cy -s, gt=[0 1 0 qr:
bodies. For a spinning projectile incorporating a synthetic jet ac- | - r ¥
tuator for control, the synthetic jet actuator is activated over a i 0 sylcy cylcy 0 0 1k,
small portion of a roll cycle leading to a train of lateral pulse @
forc_es acting on the projectile near the synthetic jet actuator U X/m 0 -r q u
cavity. :

The design of flight control systems for fin stabilized configu- vp=qYimp - 0 =pl{vys 3)
rations is well established in the missile community and the con- w Z/m -q p 0 w
trol response to force and moment inputs is reasonably well un- )
derstood. Generally these configurations are treated largely in the p L 0 -r q p
same manner as airplanes. While the uncontrolled dynamics of gr=1"Y M} < r 0O -—-p;1iqy|. 4)
spinning projectilegboth fin stabilized and spin stabilizetias r N

_ r

been extensively studied in the ballistics community, issues with a P 0
regard to control response have received considerably less attefe applied forces in the body frame that appear in &g con-
tion due to the lack of practical application of control technolog$gin contributions from weightW), air loads(A), and lateral pulse
to spinning projectiles. Using projectile linear theory, this papdprces(C),
analytically investigates several aspects of the response of a spin- X Xy XA Xc
ning projectile to lateral pulse forces including swerve response vy lva b el vt ly

. _ . w A cl- (%)
magnitude and phase angle, impulse force smearing, and yaw 7 7 7 7
cycle pulse timing. The paper begins with a discussion of the w A c
basic projectile dynamic model followed by judicious simplificaThe weight force resolved into projectile body coordinates is
tions to these equations that result in the projectile linear theogiven by Eq.(6),
equations. The solution of the projectile linear theory equations is Xu s,
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where

vV
da= gp(U*+0?+W?) 7D ©)
V=JuZ+vZ+w (10)
The Magnus aerodynamic force acts at the Magnus center of pres-
sure,
0
I, : Xam pPDCypaw
B > YAM = — qa 2V . (11)
/i x y Zam —pDCypav
o 2v
K,
The lateral pulse force is modeled as an impulse that acts on an
Fig. 1 Example of a nonuniform strain field arbitrary point on the body,
Xa Xas Xam Xc =1 Yird(t). (12)
Yap =1 Yas{ +{ Yam ;. (7) Zc Z

ZA ZAS ZAM
Equation (8) gives the standard air loads acting at the aerody? EQ. (12), Y, and Z, represent the lateral components of the

namic center of pressure, Impulse. The total magnitude of the impulse on the projectile is
, Fi=\YZ+Z2. The functiond(t) is a constant positive value
X CotC (vo+we) when the pulse is active and is zero otherwise. This function in-
YAS XOTEX2T 2 . tegrates to unity for a single pulse.
AS( =—0a ; ®) The applied moments about the projectile mass center are due
7 Cyot+Cnav/V :
AS to aerodynamic forces and momerifs as well as pulse forces
Cyzot CnaW/V (©),
L LSA I-UA LC
M} ={ Mgar +{ Mya; +¢ Mcy. (23)
N Nsa Nua N

The aerodynamic moments caused by standard and Magnus air
loads are computed with a cross product between the distance
vector from the mass center to the force application point and the

force itself. An unsteady aerodynamic damping moment is also

present, which provides a damping source for angular motion,

pPDCyip
CDD+ 2V
Lua
gbC
Mua  =,D N (14)
N
uA rDCyq
2V

All aerodynamic coefficients and the center of pressures are a
function of the Mach number of the projectile mass center. The

dynamic model previously described is highly nonlinear due to

both three-dimensional rotational kinematics expressions and the
presence of complex aerodynamic forces. The applicability of the
equations of motion shown prior, have been validated over the
past 60 years at aeroballistic ranges throughout the wWéild

Projectile Linear Theory

Pressed with the need to predict the trajectory and stability of a
ballistic shell so that useful performance data could be generated
with primitive computers, early ballisticians vigorously investi-
Fig. 2 GA flowchart gated mathematical simplifications to the equations of motion of a
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projectile. What emerged over time was a set of simplified and D
solvable, yet accurate linear differential equations which today is 0= v
commonly termed “projectile linear theory.”

q; (25)

The governing equations previously developed are expressed in D._
the body reference frame. In projectile linear theory, the lateral = v (26)
translational and rotational velocity components are transformed
to a nonrolling reference frame. The nonrolling frame or so-called pSDCyo Dgé
fixed plane frame proceeds with only precession and nutation ro- V'i=-— TV_ VAR (27)
tations from an inertial reference frame. Components of linear and
angular body velocities in the fixed plane frame can be computed pSD?C pp pSD°Cp
from the body frame components of the same vector through a p'= o] a1 p; (28)
single axis rotational transformation. For example, the body frame X X
components of the projectile mass center velocity are transforme = —A 0 0 -D = v
to the fixed plane frame b '
P Y wi( | O -A D O W Z,+G
[v 10 O (u @( | BD cp E -F||3 M [
vi=40 cos¢ sing vt (15) r’ _c/D BID F E r N,
w 0 -sing cosg) (W (29)
It should be noted that the superscript indicates the vector 7pD°Cya
components are described in the fixed plane reference frame. In 8m
projectile linear theory, a change of variables from station line 7ppD3Cypa(Slyac—Slea)
velocity componenty, to total velocity,V, is performed. Equa- A 16V
tions (16) and(17) relateV andu and their derivatives. B 4 y¥o
_ cl_ mpD Cna(SLcop—Sleo)
V=yu+v2+w?=Ju?+ 02+ W (16) el 8l, (30)
~ 5
du do dw  du _dv _dW F 7D Cuo
dv_"dt VarMar fac Ut Mar 16,
at Y - v oan PDL
IyVo

A change of variables from time, to dimensionless arc lengts, . . . . .
is also made. EquatiofL8), as defined by Murphj4], gives the These equations are a coupled set of linear differential equations
dimensionless arc length. except for the fact that the total velocity, appears in the coef-

ficients of many of the dynamic equations.

1 t
s= Sfont- (18)  Projectile Linear Theory Solution

) ) o Liner theory offers physical insight into the flight dynamics
Equations(19) and(20) relate time and arc length derivatives of aijnce closed form solutions can be readily obtaif@dUsing the
given quantity . Dotted terms refer to time derivatives, antassumption tha¥ changes slowly with respect to the other vari-

!

é«n_,’_vgr .

primed terms denote dimensionless arc length derivatives, ables, it is thus considered to be constafV,, when it appears
_ as a coefficient in all dynamic equations except its own. More-
(= (_ ' (19) over, pitch attitude of the projectile is regarded as constant in the
velocity equation, uncoupling the velocity equation from the sys-
D\2 tem. The angle of attack dynamics or epicyclic motion in &§),
Z:(_) (20) together with the roll dynamics in Eq28) are uncoupled and
Vv form a linear system of differential equations. In projectile linear
in projecale e theory,several assumpons regarang (O, U Megnus force n £ and 20 1 bpialy e
r(_elatlve size of dlfferent_quantltles are made to simplify th? anal ind is shown only for completeness. In further manipulation of
sis. Euler yaw and pitch angles are small so thai&ia6
005‘(0)%1 Si);(lﬁ)%lﬂ anpd co(y//)gl and the aerodynamic anglé ofthe equqtions, aII.Magnus forces will be droppeq. Magnus.r.no-
attack is’small so’thatv—Vv/V and B=3/V. The broiectile is ments will be retained however, due to the magnitude amplifica-
mass balanced such th_ - —IB_—UO énd | P_Il | tion resulting from the cross product between Magnus force and
=l,,=ly. The ro'ectile?iYa_eréé_ngrﬁcall s n%r%;tr}(gjjc\(h\(tha{%s respective moment arm.
E ZE_C Y'—O Q?JarjntitiesVandb ar{a larae cgmyared @ h The solution to the differential equatidi27), for the forward
YO ~z0— ¥ Y mp w’.q‘ ' . velocity, is
v, andw, such that products of small quantities and their deriva-

tives are negligible. Application of these assumptions results in b,
Egs. (21-30. V(s)= 1\ Voe 2t —= (e 2 - 1); (31)
x'=D; (1) where
,_ D pSDCxo
y'=5+Dy; (22) == (32)
D by=gD#,. 33
z’:v\Tv—Da; (23) v=92% (33)

When 6,=0, the velocity solution reduces to the familiar expo-

nential decay form4].

&' ==p: (24) The roll dynamic equation is a nonhomogeneous linear differ-
v ential equation with the following solution:
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a, oo @p In order to develop the swerve closed form solution, the epicyclic
p(s)=(p0+ b—Vo>e pe— b Vo; (34)  equations must first be solved because the lateral translation and
P P rotational velocity components are contained in the attitude differ-
where ential equations, and the attitudes are contained within the swerve
pSD?’Cpp differential equations. The epicyclic differential equations consist
ap:T; (35)  of a set of four coupled nonhomogeneous differential equations.
xx The homogeneous solution is easily formed using the free vibra-
b _PSDSCLP 36 tion modes and mode shapes, and the results are given by the
P7 Alyy (36) intrinsic complex expression
|
St
N (E—A)+iF +\(E+A)?—F2+4C+2i((E+A)F+2B) -
St [(E-A)—iF=\(E+A)?—F?+4C-2i((E+A)F+2B)|" (37)
Ss
I
Calculating the sum and product sf andsg leads the relations _(Dp
found in the next expression M*Vq(sgn(s—s,) —sgns—s,— Ln))sm(v—s+ bg
0
M 1= - 1
E-A Nt s 2DL,
F ~ D+ Dy (45)
AE+C [ T) @@, (38) . Dp
—(AF+B) — (N D+ N D) M*Vo(sgr(s—s,)—sgns—s,—L,))co V_OS+ fors
1= ;
Two more simplifications based on size are introduced. First, 2DL, (46)

neglect the product of damping and secondly, the proddgts
neglected since the density ration is assumed small. A solutitor a square wave pulse of length, that is initiated ats,, repre-
may now be obtained for both the fast and the slow dampirsgnted as

factors and turning rates for the translational and rotational veloci-
DF4

ties. . .
F anvg, 47)
N _—(A—E) N F (l (2AF+ZB)) . 39) and
' 2 JFZ—4C Fa-g) || ©9
DF X,
1 e (48)
o= [ F+F?-4c]; (40) LalyVo
Note the last two expressions become equivalent to delta function
impulses in the limit ofL,,—0.
\ —(A—E) - F (1_ (2AF+ZB)) . (a1) Once the simplified mode shapes of E9) are obtained, the
s 2 JEZ=4C F(A—-E) ||’ initial conditions forv, W, §, andT are used to complete the

solution. Equationg49) and (50) are the analytical solutions for
L. T A~ the fixed plane translation velocitigsandw, expressed in phase-
®s=3[F—VF°-4C]. (42) amplitude form,

(8) =V M cog Prs— Oy + V,e* S sin(Ds—0y)

sgr(s—sn)—sgrts—sn—Ln))
2

Pulse Force and Moment Conditions

The pulse force applied to the projectile is taken to be a lateral
impulsive force and this force is due to an actuator attached to the
projectile body]See the source terms of E9).] For this inves-

+F1(<Df51q)ss)+':2(¢s)(

tigation the force actuator is modeled as a scaled square wave F sgns—s,—L,)+1} 49
pulse so that the resulting force and moment components in the +Fa(ds) 2 ' (49)
nonrolling frame are
W(s)=V,eMSsin(Drs—0y;) — V,e's* cod Dss— 0)
Dp
* — — — — —_
F*Vo(sgr(s—sy) —sgris—ss Ln))COS( A S+¢>B) +F1(¢fs_2,¢ss_2 +F, ¢B_Z)
Y, = : 2 2 2
2L,
sgns—s,) —sgns—s,—L ™
(43) [ 5915~ S0) —sgris—s, n))+F3 P
2 2
_[Dp
F*Vo(sgns—s,) —sgns—s,—Ly))sin| —s+ ¢g sgns—s,—L,)+1
S Vo . x| = (50)
: 2L, ’
(44) where,
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V_\/((F—q’f)q’fzo“‘@f(WoE_aoD))z (‘Df(VVo(F—Qf)—BoE_?oD))Z_
1= ;

51
(s D)) (s D)) G
v :\/((F_®s)¢sao+<bs(VV0E_aoD))2 (‘bs(wo(F_(Ds)_EoE_7oD))2_ (52)
2 (I)s(cbs_q)s) (I)s(q)s_q)f) ’
D ((Wo(F— D) —voE—T,D
Oy=tan 2| IWOEZ P Z00E D) |, (53)
(F=@¢) P+ Pr(WoE—(oD)
F-®)Ppg+D(WE—TqoD
@Vz:tan_l( ~s) sUo s£ 0 ~q0 ) . (54)
Dy(Wo(F—=Ps)—voE—T(D)
GEM((P—D)F—Pd;+D?)cog DyS) + (P— () E sin(Dys) ]
F1(®Ps,Pss)=
Dy(P—Dp)(Ps—Py)
GeN((Pg—P)F— D2+ PDy)cog Ds) + (Ps— P)E sin(Ds) ] FG
- D(D—P)(Ds— D) Dy (55)
FL (6 )_v 0€METSI[(D—F)F* sinQ¢+ (M* + EF*)cosQ;]  VoelsS [ (d;—F)F* sinQg+ (M* + EF*)cosQ]
2re (Ps—Pr)(P=DPy)L, (‘Ds—fbf)(P—‘I)s)Ln
VO[F*(P F)sin(Ps+ ¢g) +(M* +EF*)C0${PS+¢B)] (56)
(P—®)(P-DyL,
c )_v oM SfeMbn((M* + EF*)cosQ+ (P —F)F* sinQ¢)— (F—®;)F* sinA;— (M* + EF*)cosA¢}
e (®,—®) (PP,
B Voes(s™tn=s{@hshn((M* + EF* ) cosQ g+ (F — D) F* sinQg) — (F—®()F* sinA¢— (M* +EF*)cosA} 57
(@, D)(P- DL, 6D
I
Dp with arc lengths plus terms that are linear withand if gravity is
P=—; (58) included the solution will have even higher order diverging terms.

Vo' These higher order terms are typically denoted as gravity drop.
b _ b . The linear terms are called jump terms, which are caused by initial
Q=(P=P)sy+ dgt Ors, Q== (P= DSy~ g~ DS conditions at the gun muzzle, lateral pulse forces, and aerody-
(59)  namic characteristics. Mathematically, setting gravity to zero and
Ar=(P—®)L,+Q;, A=(P—dL,—Q,. (60) subsequently evaluating the following limits formally defines
aerodynamic jump
Swerving motion is measured along the earth-fideénd K, () 2(s)
axes. To an observer standing behind the gun tube, these axes are ”my_:FJ im——=Ty. (63)
oriented such that positivé, is to the right and positiveK, is s DS s.= DS
pointed downward. The swerving motion results from a combina- o )
tion of the normal aerodynamic forces, as the projectile pitchd&ie total aerodynamic jump vectdris expressed as the sum of
and yaws, plus the forces and moments due to the applied if#0 vectors. The first vector represents the muzzle conditions and
pulse. Differentiating Eqs(22) and (23) with respect to nondi- the second results from the lateral pulse force and moment:

mensional arc length, generates the swerve equations such that

{FJ] A {AF+B —AE—C]
14 * _ _ _ _ ~ = —
X _ F (Sgr(s Sn) Sgr(s Sn Ln))COSpSJ’_ ¢B) A_U FK [(AF+ B)2+(AE+ C)Z]VO AE+C AF+B
D 2L, Vo'
(61) voF +WoE—qoD coslI
i | WoF —voE—roD inI1 | (64)
( 2)”_ F* (sgn(s—s;) — sgr(s—s,—L,))sin(ps+ ¢g) Wl ~vo="lo sin
D/ 2L, for which
L G-AW (62) o ACAF+B)M* + A(BE-CF)F*
Vo (AF+B)2+ (AE+C)?2
Integrating these equations is straightforward but the solutions are 5 oy .
judged to be too long to be listed here. However, the asymptotic S (ABF+ACE+C“+B)F*—A(AE+C)M
limit of these solutionss—<, is of special interest. . (AF+B)2+ (AE+C)?
For a stable projectile, the swerve caused by epicyclical vibra- (65)
tion decays as the projectile progresses downrange and does not _ 71
affect the long-term lateral motion of the projectile. When a lateral ~ IT=tan"*( (ZIY)—Ps,
pulse is applied to the projectile at arc length its effect on the
target impact point is predominantly due to induced jump, pro- —¢p as L,—0
vided the target distance is sufficient to allow the transients to sinPL/2)
decay. Projectile linear theory shows that the long-term center of N2 72> A e 2,52
mass solution, or swerve, contains terms that remain bounded A=VYirz (PLW/2) “PLyz VYt asl.—0.
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80 80
XD =-0.635 |F' =3.838x10° & tan'Y/Z-II=272N T = 3 -
. XD =035 [F =3838x107 & tan'Y/Z-T=2xN
. Xr/D = -0.318 -
= Xr/D = 0.0 s
= a0 ] /D = 0. : Xr/D =-0.318
= Xr/D = +0.318 <
i3
S 2] Xr/D =+0.635 g 40 XeD = 0.0
< £ XD = +0.318
0 : : = &
20 v“ 80 120 140 s Xr/D =+0.635
L, = 20 -
=20 [
Fig. 3 (A) Surface speckle pattern; (B) Shifted surface speckle
pattern 0 : :
0 20 40 60 80 100 120 140
L,

The quantities\ andIl are the magnitude and phase angle of the
jump vector attributed to the lateral pulse. It is interesting to note
that the jump terms induces by the lateral pulse are not dependent
on the lateral state of the projectile(s), w(s), q(s), andr(s)),
thus this particular contribution to jump is not coupled to theally along the no rollingY-axis the activation point begins at
projectile’s angle of attack. Equatiof®5) extends the work by s,=sy—L,/2 so that the duration of the impulse brackeig
Guidos and Coopef6] who considered nonspinning projectiles=2=N. Increasing pulse length,,, causes the jump components
subject to a singular, delta function, impulse. Limiting,(P) to cyclically decay while its value dt,=0 corresponds to a lat-
—0 in Egs.(64) and (65 produces expressions that agree witleral impulse that is proportional to the delta functiés—s,).
their previous predictions. Values ofL, where the jump is zero represent situations where the
duration of the lateral pulse coincides with a roll cycle. This ac-
. counts for the post multiplier, sipDL/2V), in Eq. (65 having
Lateral Pulse Smearing 2 zero crossings and causes the cyclical jump results in Fig. 3
In order to better understand the swerve response due to a &iid Fig. 4. Notice for the cases presented, the response due to a
eral pulse, results for a representative spin-stabilized 40-mm pro-
jectile configuration are calculated and discussed in this and the
next two sections. Nominal values for the aerodynamic coeffi-
cients, the projectile physical parameters, and flight characteristi
are given in the Appendix. All results presented use these valu,
unless specified differently. Diversions from these nominal valueS 20 -
are clear from the context of the particular chart under examin‘: . - ~
tion. | |F =3.838x10"° & tan”' Y/Z-TI=2xN
Plots showing the effect of smearing are given in Fig. 3 an
Fig. 4 for the applied forc&* =3.838<10™° and moments arms
to

X, /D=[—-0.635——— +0.635. Negative values oX, indicate
the application point of the pulse force is aft of the mass cent
while positive values indicate the pulse force is forward of thi=
mass center. To illustrate the smearing effects the roll positio
¢n, Of the lateral impulse force is assumed to act primarily alon 0 0

Fig. 5 Cost surface

Ln=0

Ln=10

ump Magnitude
5

the nonrollingY-axis. This means the arc leng#y, correspond- 100 200 . 300 0 500 600
ing to the center of the pulse satisfies the expresgigr ¢’ Sy Spin Rate p (/sec.)
+¢g=27N, N=0,1,2 .... Toassure this force is acting nomi-

Fig. 6 Crossover and blending of parent chromosomes

0.5 1

. -5 -1 =
F* =3.838x10"° & tan"'Y/Z-TI=27N =-0.636
Y ™, 0
0.0 T

20 40 M 100 20 140

Ll.l

Xr/D =-0.318

[F=3.838x10" & wn’v/Z-m1=27N]

A Sin[Ix10 ¢
&
t
Phase Angle IT (Degrees)

Xr/D = +0.635 R
XD = +0.318 Xr/D = +0.635
-1.0 A XvD = +0.0 Xv/D = +0.318
XrD = -0.318 3 ‘ . . ‘
0 100 200 300 400 500 600
Xr/D = -0.635
-5 Spin Rate p (1/sec.)
Fig. 4 Local deformation Fig. 7 A single series of results for the calibration routine
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Best Cost and Mean Cost vs. Generation Number

O
+

Best Cost
Mean Cost of Population

Fig. 8 Experimental setup

pulse in theJ, direction is predominantly along, however, a

smaller out of phase component of swerve is also generated.

Lateral Pulse Response Magnitude and Phase Angle

Figure 5 has charts showing the absolute valud a@fs a func-
tion of the pulse lengtt., for the previous parameter valug§

to
=3.838<10°° and X,/D=[-0.635—— +0.635. Here
again the impulse is assumed to brackgt=27N. The maxi-

Generation

Fig. 9 Best cost and mean vs generation

rate p is displayed in Fig. 6 for several pulse durations,
t

0

=[0——— 40]. This figure shows that the rate at which the aero-
dynamic jump magnitude decreases, with spin rate, is strongly
dependent on the pulse duration. Again, this is attributed to smear-
ing effects, which become more pronounced with increasing val-
ues ofL,,.

Figure 7 gives the phase anglé, [see Eq(65)] as a function
of spin rate for the same values of the moment arm leiXg#D
discussed above. Notice that the phase angle linearly increases
with spin rate, indicating that spin stabilized projectiles are most

mum value occurs dt,,=0, which is the delta function result, assusceptible to an out of phase swerve response due to lateral pulse
is justified from Eq.(65). Consideration of\ as a function of spin forces.

Plot for Eyy {Contour}

) 0004 .|
a00g - ‘ /
e ’
_______________ o o® Lo
[
Q.00p /~/—“—"-’~
o 0.002
o e 0004

/,4.—/—“ 2004 " o ©.006 -

.

Fig. 10 2D strain contours next to
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Target Interception p
The last topic discussed in this paper examines the relationshi@
between a given change in aerodynamic jurﬁﬁ;i}, and the r

impulse needed to create this change. This may be desirable whe%
the activated impulse is strong enough to force a projectile tos

Angular velocity components vector of projectile in
the no-roll frame

= Surface are®= wD?/4

Nondimensional arch length

strike its target, located at a relative posit@{i}, with a single 97 = (g1 7#0
impulse. Hence Eq64) requires u
v = Mass center velocity components in the body refer-
AT, sinIl w ence frame
AT| = ™| cosIT|" (66)
Vo = Forward velocity of projectile

Solving this system fofl while insisting thatll remain real val-

ued yields the following two equations for target interception.  u
v = Mass center velocity components in the no-roll refer-
w ence frame

sinz(sth> _ PDsy(AT;+AT) 67)
2V, 2Vo(32+32) X, = Dimensional moment arm length
\ . .
z = Applied force components in the no-roll reference
pDs, PDL,  [AT\S,-AT 3, frame
Vo P57 oy, TN AT S 7 AT, T2 X
0 0 = K=K (68) yt = Position vector of body center of mass in an inertial

reference frame

Using Eq.(65) the impulse forcer, can be determined from Eq. @ = Longitudinal aerodynamic angle of attack

(67), for a given moment arnk, , and then Eq(68) solved for¢g B = Lateral aerodynamic angle of attack
will guarantee target impact provided the relative target positionAK

{ﬁp}, is known (see Figs. 8—10 Ay = 2 Components of aerodynamic jump due to lateral
« impulse
IT = Phase angle of the aerodynamic jump due to lateral
impulse

Conclusions

An analytical approach for quantifying the effect of a lateral
square impulse disturbing a projectile during free flight has been
presented. All of the analysis was based on projectile linear o
theory, which produces simple closed form solutions for the as$e = Euler roll angle of the applied impulse
sumed square pulse disturbance. These solutions are then used to .
calculate the projectile swerving motion, so that the long-terfPPeNdix
effects of the lateral impulse are readily determined. The primary The numerical values used for the graphical presentations given
interest regarding target interception is the projectile’s aerody this report are shown in the following matrices:
namic jump. Changes to aerodynamic jump caused by the lateral

= Euler roll, pitch, and yaw angles of the projectile

impulse forces was shown to produce easy to understand additive ([ Cxo 0.279
contributions to the usual aerodynamic jump of a free flight pro- Cx2 2.672
jectile with no applied impulse. . . Cna 2.329
The important question concerning smearing effects originating Aerodynamic coefficients Cypa[ ~ ] —0.295
from a finite length pulse has been addressed where pulse induced _
L9 v ) Cip 0.042
control authority is shown to diminish asL}/. Calculations also c —1.800
show the additional aerodynamic jump magnitule,decreases \ MQ )
with spin ratep when subjected to various pulse lengthgs. (m ) ( 0.0116Slug )
Iy 2.85<10° Slugft?
Iy 2.72<1075 Slug ft?2
Nomenclature Physical parameters{ D )= 0.137 ft.
C; = Projectile aerodynamic coefficients Slcop 0.237 ft.
D = Projectile characteristic lengtldiametey Slvac 0.239 ft.
Fs = Dimensional impulse force \ Skee ) | 0.0713 ft.
g = Gravitational constant p 2.38x10°3 Slugft.3
G = Scaled gravitational consta@=gD/V, Flight characteristics{ Vo = 250.0 ft.s?t
| =1
IX = Mass moments of inertia P 399.7 s
Y
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