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Flight Dynamic Response of
Spinning Projectiles to Lateral
Impulsive Loads
The linear theory for spinning projectiles is extended to account for the application
simple lateral square impulse activated during free flight. Analytical results are show
produce simple contributions to the familiar aerodynamic jump formulation. Inqui
regarding jump smearing caused by nonzero impulse length are addressed and ans
The formulation shows for sufficiently long-term target interception, lateral impulse
jectory response for a guided projectile is independent of when the impulse is acti
during the yaw cycle. Simple limits show the presented results reducing to those
ously found for a zero-spin projectile acted upon by a singular lateral impulse.
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Introduction

The continuing development of microelectromechanical s
tems~MEMS! is pointing to the possibility of mounting complet
sensor systems on medium- and small-caliber projectiles as pa
an actively controlled smart munition. Two important technic
challenges in achieving this goal are the development of sm
rugged sensor suites and control mechanisms. With regard to
development of control mechanisms, several concepts h
emerged that produce controllable impulsive lateral forces o
projectile body. For example, Harkins and Brown@1# considered
the use of a set of lateral pulse jets or squibs to reduce dispe
of a rocket by firing squibs to minimize projectile pitch and ya
rate. For the notional cases evaluated, dispersion was reduced
factor of 5. Jitpraphai and Costello@2# considered the same typ
of control mechanism and used a trajectory tracking flight con
system to improve impact point performance of a direct fire roc
equipped with a ring of squibs. Amitay et al.@3# considered the
use of synthetic jet actuators as a control mechanism on lif
bodies. For a spinning projectile incorporating a synthetic jet
tuator for control, the synthetic jet actuator is activated ove
small portion of a roll cycle leading to a train of lateral pul
forces acting on the projectile near the synthetic jet actua
cavity.

The design of flight control systems for fin stabilized config
rations is well established in the missile community and the c
trol response to force and moment inputs is reasonably well
derstood. Generally these configurations are treated largely in
same manner as airplanes. While the uncontrolled dynamic
spinning projectiles~both fin stabilized and spin stabilized! has
been extensively studied in the ballistics community, issues w
regard to control response have received considerably less a
tion due to the lack of practical application of control technolo
to spinning projectiles. Using projectile linear theory, this pap
analytically investigates several aspects of the response of a
ning projectile to lateral pulse forces including swerve respo
magnitude and phase angle, impulse force smearing, and
cycle pulse timing. The paper begins with a discussion of
basic projectile dynamic model followed by judicious simplific
tions to these equations that result in the projectile linear the
equations. The solution of the projectile linear theory equation
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used to shed light on intuitive and subtle factors that influen
swerve response of a projectile exposed to lateral impulsive lo

Projectile Dynamic Model
It is well known that the motion of most projectile configura

tions can be captured using a rigid body 6 degrees of freed
dynamic model@4,5#. The degrees of freedom include three po
tion components of the mass center of the projectile as wel
three Euler orientation angles of the body. Figures 1 and 2 sh
schematics of the dynamic model degrees of freedom. The e
tions of motion are provided in Eqs.~1–4!.

H ẋ
ẏ
ż
J 5F cucc sfsucc2cfsc cfsucc1sfsc

cusc sfsusc1cfcc cfsusc2sfcc

2su sfcu cfcu

G H u
v
w
J ; (1)

H ḟ

u̇

ċ
J 5F 1 sftu cftu

0 cf 2sf

0 sf /cu cf /cu

G H p
q
r
J 5F 1 0 tu

0 1 0

0 0 1/cu

G H p
q̃
r̃
J ;

(2)

H u̇
v̇
ẇ
J 5H X/m

Y/m
Z/m

J 2F 0 2r q

r 0 2p

2q p 0
G H u

v
w
J ; (3)

H ṗ
q̇
ṙ
J 5I 21F H L

M
N
J 2H 0 2r q

r 0 2p

2q p 0
J I H p

q
r
J G . (4)

The applied forces in the body frame that appear in Eq.~5! con-
tain contributions from weight~W!, air loads~A!, and lateral pulse
forces~C!,

H X
Y
Z
J 5H XW

YW

ZW

J 1H XA

YA

ZA

J 1H XC

YC

ZC

J . (5)

The weight force resolved into projectile body coordinates
given by Eq.~6!,

H XW

YW

ZW

J 5mgH 2su

sfcu

cfcu

J . (6)

The air loads are split in two components, the standard aero
namic forces and the Magnus forces.

nal
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H XA

YA

ZA

J 5H XAS

YAS

ZAS

J 1H XAM

YAM

ZAM

J . (7)

Equation ~8! gives the standard air loads acting at the aero
namic center of pressure,

H XAS

YAS

ZAS

J 52qaH CX01CX2

~v21w2!

V2

CY01CNAv/V
CZ01CNAw/V

J ; (8)

Fig. 1 Example of a nonuniform strain field

Fig. 2 GA flowchart
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where

qa5
1
8r~u21v21w2!pD2; (9)

V5Au21v21w2. (10)

The Magnus aerodynamic force acts at the Magnus center of p
sure,

H XAM

YAM

ZAM

J 52qa5
0

pDCNPAw

2V
2pDCNPAv

2V
6 . (11)

The lateral pulse force is modeled as an impulse that acts o
arbitrary point on the body,

H XC

XC

ZC

J 5H 0
YI

ZI

J d~ t !. (12)

In Eq. ~12!, YI and ZI represent the lateral components of t
impulse. The total magnitude of the impulse on the projectile
FI5AYI

21ZI
2. The function d(t) is a constant positive value

when the pulse is active and is zero otherwise. This function
tegrates to unity for a single pulse.

The applied moments about the projectile mass center are
to aerodynamic forces and moments~A! as well as pulse forces
~C!,

H L
M
N
J 5H LSA

MSA

NSA

J 1H LUA

MUA

NUA

J 1H LC

MC

Nm

J . (13)

The aerodynamic moments caused by standard and Magnu
loads are computed with a cross product between the dista
vector from the mass center to the force application point and
force itself. An unsteady aerodynamic damping moment is a
present, which provides a damping source for angular motion

H LUA

MUA

NUA

J 5qaD5
CDD1

pDCLP

2V
qDCMQ

2V
rDCMQ

2V

6 . (14)

All aerodynamic coefficients and the center of pressures ar
function of the Mach number of the projectile mass center. T
dynamic model previously described is highly nonlinear due
both three-dimensional rotational kinematics expressions and
presence of complex aerodynamic forces. The applicability of
equations of motion shown prior, have been validated over
past 60 years at aeroballistic ranges throughout the world@5#.

Projectile Linear Theory
Pressed with the need to predict the trajectory and stability

ballistic shell so that useful performance data could be gener
with primitive computers, early ballisticians vigorously inves
gated mathematical simplifications to the equations of motion o
Transactions of the ASME
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projectile. What emerged over time was a set of simplified a
solvable, yet accurate linear differential equations which toda
commonly termed ‘‘projectile linear theory.’’

The governing equations previously developed are expresse
the body reference frame. In projectile linear theory, the late
translational and rotational velocity components are transform
to a nonrolling reference frame. The nonrolling frame or so-ca
fixed plane frame proceeds with only precession and nutation
tations from an inertial reference frame. Components of linear
angular body velocities in the fixed plane frame can be compu
from the body frame components of the same vector throug
single axis rotational transformation. For example, the body fra
components of the projectile mass center velocity are transfor
to the fixed plane frame by

H ũ
ṽ
w̃
J 5H 1 0 0

0 cosf sinf

0 2sinf cosf
J H u

v
w
J . (15)

It should be noted that theÃ superscript indicates the vecto
components are described in the fixed plane reference fram
projectile linear theory, a change of variables from station l
velocity component,u, to total velocity,V, is performed. Equa-
tions ~16! and ~17! relateV andu and their derivatives.

V5Au21v21w25Au21 ṽ21w̃2; (16)

dV

dt
5

u
du

dt
1v

dv
dt

1w
dw

dt

V
5

u
du

dt
1 ṽ

dṽ
dt

1w̃
dw̃

dt

V
; (17)

A change of variables from time,t, to dimensionless arc length,s,
is also made. Equation~18!, as defined by Murphy@4#, gives the
dimensionless arc length.

s5
1

D E
0

t

Vdt. (18)

Equations~19! and~20! relate time and arc length derivatives of
given quantity z. Dotted terms refer to time derivatives, an
primed terms denote dimensionless arc length derivatives,

ż5S D

V D z8; (19)

z̈5S D

V D 2Fz91
V8

V
z8G . (20)

In projectile linear theory, several assumptions regarding
relative size of different quantities are made to simplify the ana
sis. Euler yaw and pitch angles are small so that sin~u!'u,
cos~u!'1, sin~c!'c, and cos~c!'1 and the aerodynamic angle o
attack is small so thata5w̃/V and b5 ṽ/V. The projectile is
mass balanced such thatI XY5I XZ5I YZ50 and I ZZ5I YY⇒I YY
5I ZZ[I Y . The projectile is aerodynamically symmetric such th
CY05CZ050. Quantities V andf are large compared tou, c, q, r,
v, andw, such that products of small quantities and their deri
tives are negligible. Application of these assumptions results
Eqs.~21–30!.

x85D; (21)

y85
D

V
ṽ1Dc; (22)

z85
D

V
w̃2Du; (23)

f85
D

V
p; (24)
Journal of Dynamic Systems, Measurement, and Control
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u85
D

V
q̃; (25)

c85
D

V
r̃ ; (26)

V852
rSDCXO

2m
V2

Dgu

V
; (27)

p85
rSD2CLDD

2I X
V1

rSD3CLP

4I X
p; (28)

H ṽ8
w̃8
q̃8
r̃ 8
J 5F 2A 0 0 2D

0 2A D 0

B/D C/D E 2F

2C/D B/D F E

G H ṽ
w̃
q̃
r̃
J 1H YI

ZI1G
MI

NI

J ;

(29)

5
A
B
C
E
F
6 5

¦

prD3CNA

8m
prpD5CY PA~SLMAG2SLCG!

16I yV0

prD4CNA~SLCOP2SLCG!

8I y

prD5CMQ

16I y

pDIx

I yV0

§
. (30)

These equations are a coupled set of linear differential equat
except for the fact that the total velocity,V, appears in the coef-
ficients of many of the dynamic equations.

Projectile Linear Theory Solution
Liner theory offers physical insight into the flight dynamic

since closed form solutions can be readily obtained@4#. Using the
assumption thatV changes slowly with respect to the other va
ables, it is thus considered to be constant,V'V0 , when it appears
as a coefficient in all dynamic equations except its own. Mo
over, pitch attitude of the projectile is regarded as constant in
velocity equation, uncoupling the velocity equation from the s
tem. The angle of attack dynamics or epicyclic motion in Eq.~29!,
together with the roll dynamics in Eq.~28! are uncoupled and
form a linear system of differential equations. In projectile line
theory, the Magnus force in Eqs.~25! and ~26! is typically re-
garded as small in comparison to the other aerodynamic fo
and is shown only for completeness. In further manipulation
the equations, all Magnus forces will be dropped. Magnus m
ments will be retained however, due to the magnitude amplifi
tion resulting from the cross product between Magnus force
its respective moment arm.

The solution to the differential equation~27!, for the forward
velocity, is

V~s!5AV0
2e22aVs1

bv

av
~e22avs21!; (31)

where

aV5
rSDCX0

2m
; (32)

bV5gDu0 . (33)

When u050, the velocity solution reduces to the familiar exp
nential decay form@4#.

The roll dynamic equation is a nonhomogeneous linear diff
ential equation with the following solution:
SEPTEMBER 2004, Vol. 126 Õ 607
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p~s!5S p01
ap

bp
V0Debps2

ap

bp
V0 ; (34)

where

ap5
rSD2CLDD

2I XX
; (35)

bp5
rSD3CLP

4I XX
. (36)
i

o

e
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In order to develop the swerve closed form solution, the epicy
equations must first be solved because the lateral translation
rotational velocity components are contained in the attitude dif
ential equations, and the attitudes are contained within the sw
differential equations. The epicyclic differential equations cons
of a set of four coupled nonhomogeneous differential equatio
The homogeneous solution is easily formed using the free vib
tion modes and mode shapes, and the results are given by
intrinsic complex expression
2H sf

ss
s̄f

s̄s

J 5H ~E2A!1 iF 6A~E1A!22F214C12i ~~E1A!F12B!

~E2A!2 iF 6A~E1A!22F214C22i ~~E1A!F12B!J . (37)
tion

e
r
-

Calculating the sum and product ofsf and ss leads the relations
found in the next expression

H E2A
F

AE1C
2~AF1B!

J 5H l f1ls

F f1Fs

F fFs2l fls

2~l fFs1lsF f !
J . (38)

Two more simplifications based on size are introduced. F
neglect the product of damping and secondly, the productAE is
neglected since the density ration is assumed small. A solu
may now be obtained for both the fast and the slow damp
factors and turning rates for the translational and rotational vel
ties.

l f5
2~A2E!

2 F11
F

AF224C
S 12

~2AF12B!

F~A2E! D G ; (39)

F f5
1

2 @F1AF224C# ; (40)

ls5
2~A2E!

2 F12
F

AF224C
S 12

~2AF12B!

F~A2E! D G ; (41)

Fs5
1
2@F2AF224C#. (42)

Pulse Force and Moment Conditions
The pulse force applied to the projectile is taken to be a lat

impulsive force and this force is due to an actuator attached to
projectile body.@See the source terms of Eq.~29!.# For this inves-
tigation the force actuator is modeled as a scaled square w
pulse so that the resulting force and moment components in
nonrolling frame are

YI5

F* V0~sgn~s2sn!2sgn~s2sn2Ln!!cosS Dp

V0
s1fBD

2Ln
;

(43)

ZI5

F* V0~sgn~s2sn!2sgn~s2sn2Ln!!sinS Dp

V0
s1fBD

2Ln
;

(44)
rst,

tion
ing
ci-

ral
the

ave
the

MI52

M* V0~sgn~s2sn!2sgn~s2sn2Ln!!sinS Dp

V0
s1fBD

2DLn
;

(45)

NI5

M* V0~sgn~s2sn!2sgn~s2sn2Ln!!cosS Dp

V0
s1fBD

2DLn
;

(46)

for a square wave pulse of lengthLn that is initiated atsn repre-
sented as

F* 5
DFd

LnmV0
2

; (47)

and

M* 5
DFdXr

LnI yV0
2

. (48)

Note the last two expressions become equivalent to delta func
impulses in the limit ofLn→0.

Once the simplified mode shapes of Eq.~29! are obtained, the
initial conditions for ṽ, w̃, q̃, and r̃ are used to complete th
solution. Equations~49! and ~50! are the analytical solutions fo
the fixed plane translation velocitiesṽ andw̃, expressed in phase
amplitude form,

ṽ~s!5V1el f s cos~FFs2QV1!1V2elss sin~Fss2QV2!

1F1~F fs,Fss!1F2~fB!S sgn~s2sn!2sgn~s2sn2Ln!

2 D
1F3~fB!S sgn~s2sn2Ln!11

2 D ; (49)

w̃~s!5V1el f s sin~FFs2QV1!2V2elss cos~FSs2QV2!

1F1S F fs2
p

2
,Fss2

p

2 D1F2S fB2
p

2 D
3S sgn~s2sn!2sgn~s2sn2Ln!

2 D1F3S fB2
p

2 D
3S sgn~s2sn2Ln!11

2 D ; (50)

where,
Transactions of the ASME
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V15AS ~F2F f !F f ṽ01F f~w̃0E2q̃0D !

F f~Fs2F f !
D 2

1S F f~w̃0~F2F f !2 ṽ0E2 r̃ 0D !

F f~Fs2F f !
D 2

; (51)

V25AS ~F2Fs!Fsṽ01Fs~w̃0E2q̃0D !

Fs~Fs2Fs!
D 2

1S Fs~w̃0~F2Fs!2 ṽ0E2 r̃ 0D !

Fs~Fs2F f !
D 2

; (52)

QV15tan21S F f~w̃0~F2F f !2 ṽ0E2 r̃ 0D !

~F2F f !F f ṽ01F f~w̃0E2q̃0D ! D ; (53)

QV25tan21S ~F2Fs!Fsṽ01Fs~w̃0E2q̃0D !

Fs~w̃0~F2Fs!2 ṽ0E2 r̃ 0D ! D ; (54)

F1~F fs,Fss!5
Gel f s@~~P2F f !F2PF f1F f

2!cos~F fs!1~P2F f !E sin~F fs!#

F f~P2F f !~Fs2F f !

2
Gelss@~~Fs2P!F2Fs

21PFs!cos~Fss!1~Fs2P!E sin~Fss!#

Fs~Fs2P!~Fs2F f !
2

FG

F fFs
; (55)

F2~fB!5
V0el f ~s2sn!@~F f2F !F* sinV f1~M* 1EF* !cosV f #

~Fs2F f !~P2F f !Ln
2

V0els~s2sn!@~F f2F !F* sinVs1~M* 1EF* !cosVs#

~Fs2F f !~P2Fs!Ln

1
V0@F* ~P2F !sin~Ps1fB!1~M* 1EF* !cos~Ps1fB!#

~P2F f !~P2Fs!Ln
; (56)

F3~fB!5
V0el f ~s2Ln2sn!$el fLn~~M* 1EF* !cosV f1~F f2F !F* sinV f !2~F2F f !F* sinD f2~M* 1EF* !cosD f%

~Fs2F f !~P2F f !Ln

2
V0els~s2Ln2sn!$elsLn~~M* 1EF* !cosVs1~F2Fs!F* sinVs!2~F2F f !F* sinD f2~M* 1EF* !cosD f%

~Fs2F f !~P2Fs!Ln
; (57)
n
h

h

o

s

r

s.
rop.
itial
dy-
nd

es

f
and
P5
Dp

V0
; (58)

V f5~P2F f !sn1fB1F fs, Vs52~P2Fs!sn2fB2Fss;
(59)

D f5~P2F f !Ln1V f , Ds5~P2F f !Ln2Vs . (60)

Swerving motion is measured along the earth-fixedJI and KI
axes. To an observer standing behind the gun tube, these axe
oriented such that positiveJI is to the right and positiveKI is
pointed downward. The swerving motion results from a combi
tion of the normal aerodynamic forces, as the projectile pitc
and yaws, plus the forces and moments due to the applied
pulse. Differentiating Eqs.~22! and ~23! with respect to nondi-
mensional arc length, generates the swerve equations such t

S y

D D 9
5

F* ~sgn~s2sn!2sgn~s2sn2Ln!!cos~ps1fB!

2Ln
2

Aṽ
V0

;

(61)

S z

D D 9
5

F* ~sgn~s2sn!2sgn~s2sn2Ln!!sin~ps1fB!

2Ln

1
G2Aw̃

V0
; (62)

Integrating these equations is straightforward but the solutions
judged to be too long to be listed here. However, the asympt
limit of these solutions,s→`, is of special interest.

For a stable projectile, the swerve caused by epicyclical vib
tion decays as the projectile progresses downrange and doe
affect the long-term lateral motion of the projectile. When a late
pulse is applied to the projectile at arc lengthsn , its effect on the
target impact point is predominantly due to induced jump, p
vided the target distance is sufficient to allow the transients
decay. Projectile linear theory shows that the long-term cente
mass solution, or swerve, contains terms that remain boun
Journal of Dynamic Systems, Measurement, and Control
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with arc lengths plus terms that are linear withs and if gravity is
included the solution will have even higher order diverging term
These higher order terms are typically denoted as gravity d
The linear terms are called jump terms, which are caused by in
conditions at the gun muzzle, lateral pulse forces, and aero
namic characteristics. Mathematically, setting gravity to zero a
subsequently evaluating the following limits formally defin
aerodynamic jump

lim
s→`

y~s!

Ds
5GJ lim

s→`

z~s!

Ds
5GK . (63)

The total aerodynamic jump vectorG is expressed as the sum o
two vectors. The first vector represents the muzzle conditions
the second results from the lateral pulse force and moment:

H GJ

GK
J 52

A

@~AF1B!21~AE1C!2#V0
H AF1B 2AE2C

AE1C AF1B J
3H v0F1w0E2q0D

w0F2v0E2r 0D J 1L H cosP
sinP J ; (64)

for which

Y5
A~AF1B!M* 1A~BE2CF!F*

~AF1B!21~AE1C!2

Z5
~ABF1ACE1C21B2!F* 2A~AE1C!M*

~AF1B!21~AE1C!2

(65)

P5tan21~Z/Y!2
PLn

2
2Psn2fB→tan21~Z/Y!2Psn

2fB as Ln→0

L5AY21Z2
sin~PLn/2!

~PLn/2!
→AY21Z2 as Ln→0.
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The quantitiesL andP are the magnitude and phase angle of
jump vector attributed to the lateral pulse. It is interesting to n
that the jump terms induces by the lateral pulse are not depen
on the lateral state of the projectile (ṽ(s), w̃(s), q̃(s), andr̃ (s)),
thus this particular contribution to jump is not coupled to t
projectile’s angle of attack. Equation~65! extends the work by
Guidos and Cooper@6# who considered nonspinning projectile
subject to a singular, delta function, impulse. Limiting (Ln ,P)
→0 in Eqs.~64! and ~65! produces expressions that agree w
their previous predictions.

Lateral Pulse Smearing
In order to better understand the swerve response due to a

eral pulse, results for a representative spin-stabilized 40-mm
jectile configuration are calculated and discussed in this and
next two sections. Nominal values for the aerodynamic coe
cients, the projectile physical parameters, and flight characteri
are given in the Appendix. All results presented use these va
unless specified differently. Diversions from these nominal val
are clear from the context of the particular chart under exam
tion.

Plots showing the effect of smearing are given in Fig. 3 a
Fig. 4 for the applied forceF* 53.83831025 and moments arms

Xr /D5@20.635——→
to

10.635#. Negative values ofXr indicate
the application point of the pulse force is aft of the mass cen
while positive values indicate the pulse force is forward of t
mass center. To illustrate the smearing effects the roll posit
fN , of the lateral impulse force is assumed to act primarily alo
the nonrollingY-axis. This means the arc length,sN , correspond-
ing to the center of the pulse satisfies the expressionfN5f8sN
1fB52pN, N50,1,2, . . . . To assure this force is acting nom

Fig. 3 „A… Surface speckle pattern; „B… Shifted surface speckle
pattern

Fig. 4 Local deformation
610 Õ Vol. 126, SEPTEMBER 2004

rom: http://dynamicsystems.asmedigitalcollection.asme.org/ on 07/23/201
he
te

dent

e

s

th

lat-
ro-
the
ffi-
tics
ues
es

na-

nd

ter
he
on,
ng

-

nally along the no rollingY-axis the activation point begins a
sn5sN2Ln/2 so that the duration of the impulse bracketsfN
52pN. Increasing pulse length,Ln , causes the jump componen
to cyclically decay while its value atLn50 corresponds to a lat
eral impulse that is proportional to the delta functiond(s2sn).
Values ofLn where the jump is zero represent situations where
duration of the lateral pulse coincides with a roll cycle. This a
counts for the post multiplier, sin(pDLn/2V0), in Eq. ~65! having
2p zero crossings and causes the cyclical jump results in Fig
and Fig. 4. Notice for the cases presented, the response due

Fig. 5 Cost surface

Fig. 6 Crossover and blending of parent chromosomes

Fig. 7 A single series of results for the calibration routine
Transactions of the ASME
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pulse in theJI direction is predominantly alongJI however, a
smaller out of phase component of swerve is also generated.

Lateral Pulse Response Magnitude and Phase Angle
Figure 5 has charts showing the absolute value ofL as a func-

tion of the pulse lengthLn for the previous parameter valuesF*

53.83831025 and Xr /D5@20.635——→
to

10.635#. Here
again the impulse is assumed to bracketfN52pN. The maxi-
mum value occurs atLn50, which is the delta function result, a
is justified from Eq.~65!. Consideration ofL as a function of spin

Fig. 8 Experimental setup
Journal of Dynamic Systems, Measurement, and Control
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s

rate p is displayed in Fig. 6 for several pulse durations,Ln

5@0 ——→
to

40#. This figure shows that the rate at which the ae
dynamic jump magnitude decreases, with spin rate, is stron
dependent on the pulse duration. Again, this is attributed to sm
ing effects, which become more pronounced with increasing v
ues ofLn .

Figure 7 gives the phase angle,P, @see Eq.~65!# as a function
of spin rate for the same values of the moment arm lengthXr /D
discussed above. Notice that the phase angle linearly incre
with spin rate, indicating that spin stabilized projectiles are m
susceptible to an out of phase swerve response due to lateral
forces.

Fig. 9 Best cost and mean vs generation
Fig. 10 2D strain contours next to a hole in plate loaded vertically
SEPTEMBER 2004, Vol. 126 Õ 611
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Target Interception
The last topic discussed in this paper examines the relation

between a given change in aerodynamic jump,$DGK

DGJ %, and the

impulse needed to create this change. This may be desirable w
the activated impulse is strong enough to force a projectile
strike its target, located at a relative position$DGK

DGJ %, with a single

impulse. Hence Eq.~64! requires

H DGJ

DGK
J 5L H sinP

cosPJ . (66)

Solving this system forP while insisting thatP remain real val-
ued yields the following two equations for target interception.

sin2S pDsn

2V0
D5

pDsn~DGJ1DGK!

2V0~SJ
21SK

2 !
; (67)

pDsn

V0
1fB52

pDLn

2V0
1tan21S DGKSJ2DGJSK

DGJSJ1DGKSK
D12pN.

(68)

Using Eq.~65! the impulse forceFI can be determined from Eq
~67!, for a given moment armXr , and then Eq.~68! solved forfB
will guarantee target impact provided the relative target positi
$DGK

DGJ %, is known~see Figs. 8–10!.

Conclusions
An analytical approach for quantifying the effect of a late

square impulse disturbing a projectile during free flight has b
presented. All of the analysis was based on projectile lin
theory, which produces simple closed form solutions for the
sumed square pulse disturbance. These solutions are then us
calculate the projectile swerving motion, so that the long-te
effects of the lateral impulse are readily determined. The prim
interest regarding target interception is the projectile’s aero
namic jump. Changes to aerodynamic jump caused by the la
impulse forces was shown to produce easy to understand add
contributions to the usual aerodynamic jump of a free flight p
jectile with no applied impulse.

The important question concerning smearing effects origina
from a finite length pulse has been addressed where pulse ind
control authority is shown to diminish as 1/Ln . Calculations also
show the additional aerodynamic jump magnitude,S, decreases
with spin ratep when subjected to various pulse lengthsLn .

Nomenclature

Ci 5 Projectile aerodynamic coefficients
D 5 Projectile characteristic length~diameter!
Fd 5 Dimensional impulse force
g 5 Gravitational constant
G 5 Scaled gravitational constantG5gD/V0

IX

IY
5 Mass moments of inertia

L

M̃

Ñ
5 Applied moments about projectile mass center ex-

pressed in the no-roll frame

m 5 Projectile mass
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p
q̃
r̃

5 Angular velocity components vector of projectile in
the no-roll frame

S 5 Surface areaS5pD2/4
s 5 Nondimensional arch length

sgn~t! 5 $0 t50
t/utu tÞ0

u
v
w

5 Mass center velocity components in the body refer-
ence frame

V0 5 Forward velocity of projectile

u
ṽ
w̃

5 Mass center velocity components in the no-roll refer
ence frame

Xr 5 Dimensional moment arm length

ZI

YI 5 Applied force components in the no-roll reference
frame

Hx
y
z
J 5 Position vector of body center of mass in an inertial

reference frame
a 5 Longitudinal aerodynamic angle of attack
b 5 Lateral aerodynamic angle of attack

LK

LJ
5 K

J Components of aerodynamic jump due to lateral
impulse

P 5 Phase angle of the aerodynamic jump due to lateral
impulse

f
u
c

5 Euler roll, pitch, and yaw angles of the projectile

fB 5 Euler roll angle of the applied impulse

Appendix
The numerical values used for the graphical presentations g

in this report are shown in the following matrices:

Aerodynamic coefficients°5
CX0

CX2

CNA

CY PA

CLP

CMQ

6 55
0.279
2.672
2.329

20.295
20.042
21.800

6
Physical parameters°5

m
I X

I Y

D
SLCOP

SLMAG

SLCG

6 55
0.0116 Slug

2.8531025 Slug ft.2

2.7231025 Slug ft.2

0.137 ft.
0.237 ft.
0.239 ft.
0.0713 ft.

6
Flight characteristics°H r

V0

p
J 5H 2.3831023 Slug ft.23

250.0 ft. s21

399.7 s21
J .
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