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Guided airdrop systems have traditionally used position and velocity information from a GPS receiver as 
their only source of feedback. The use of additional sensors in the guidance units is challenging because 
sensors in the guidance unit are in close proximity to powerful electric motors. Furthermore, there is a 
large amount of relative motion between the guidance unit and the parachute as they are coupled by a 
flexible network of rigging lines. By placing sensors in the parachute itself, it is possible to obtain accurate 
estimates of the canopy motion and orientation with low-cost sensors requiring minimal calibration. 
Specialized in-canopy sensor pods were developed to provide distributed sensing throughout a parachute 
canopy and a sensor fusion algorithm was developed to combine the raw data from these sensor pods 
into useful canopy state estimates. The effectiveness of this approach is demonstrated first in simulation, 
and then with flight test results on full-scale airdrop systems. The rich feedback signal available from in-
canopy sensors can provide improved datasets for more detailed system identification as well as enabling 
novel guidance, navigation and control approaches which will lead directly to improved landing accuracy.

© 2019 Elsevier Masson SAS. All rights reserved.
1. Introduction

Gliding parachutes represent a simple type of aircraft to con-
trol in the sense that the canopy will quickly stabilize to a unique 
lateral and longitudinal trim point with a fixed control input. This 
means that lateral control can be achieved by simply controlling 
heading. Longitudinal control is not necessary but can be achieved 
by controlling airspeed if desired. The challenge in the control 
problem is that heading angle and airspeed are not typically di-
rectly measured on a guided airdrop system. Traditionally, preci-
sion guided parafoil systems have used GPS as their only feedback 
signal. From the position and velocity information provided by the 
GPS receiver, a navigation filter must be used to estimate critical 
states such as heading, airspeed and wind velocity.

The autonomous guidance unit (AGU) for an airdrop system is 
placed at the base of the rigging lines. The guidance unit consists 
of all of the sensing, actuation, and computation components in a 
compact enclosure. This creates a number of challenges for pro-
viding useful feedback. The compact AGU implies that any sensors 
will be in close proximity to powerful electric motors used to steer 
the parachute. Guided airdrop systems have been developed which 
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incorporated additional sensors beyond a single GPS receiver into 
the guidance unit [1–3]. Carter et al., for instance, described early 
efforts to obtain heading with a dual antenna GPS receiver, which 
was successful but prohibitively expensive [3]. They describe and 
present results for a guided airdrop system which used a single-
antenna GPS coupled with inertial sensors, and magnetometer data 
was not used due to the electromagnetic interference problems.

Even if a solution is developed which provides extremely accu-
rate heading information of the guidance unit, the flexible network 
of rigging lines that connects the guidance unit to the parachute 
results in significant relative motion between the two. It is of 
course the heading of the parachute, not the guidance unit, which 
needs to be controlled. The problem of relative motion between 
the guidance unit and parachute canopy has been well studied, 
and efforts have been made to identify and model this motion 
with 7, 8, and 9 degree of freedom models to capture the rela-
tive roll, pitch, and yaw dynamics, as well as higher order models 
to attempt to capture relative translation [4–7].

Gorman and Slegers presented flight test results analyzing the 
relative motion between the payload and parachute with the use 
of small, wireless sensors placed in the parachute itself [8]. Slegers 
et al. examined the use of in-canopy sensors to provide accu-
rate estimates of canopy motion on a full-scale airdrop system [9]. 
This strategy allows direct feedback of actual canopy motion and 
completely bypasses the relative motion issue. Furthermore, the 
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Nomenclature

TIB rotation matrix from inertial reference frame to body 
reference frame

T Si rotation matrix from body reference frame to sensor i
reference frame−→r CG→Si vector from body center of mass to sensor i location

x, y, z position in inertial reference frame
φ, θ,ψ roll, pitch, and yaw angles
ẋ, ẏ, ż velocity in inertial reference frame
p,q, r rotational velocity in body reference frame
m system mass
IT system inertia tensor
F A, M A canopy aerodynamic force and moment
FAM, MAM canopy apparent mass force and moment
F S payload aerodynamic force

F W weight force
b canopy span
c canopy main chord
α angle of attack
β sideslip angle
b canopy span
ρ air density
A, B, C apparent mass coefficients
P , Q , R apparent inertia coefficients
AGU autonomous guidance unit
ICSP in-canopy sensor pod
TRW total rigged weight
GPS global positioning system
GNC guidance, navigation, and control
parachute canopy is an ideal environment for the use of a magne-
tometer. Burdette, Costello, and Scheuermann presented simulation 
results for a strategy of fusing data from multiple, low-cost iner-
tial sensors and GPS receivers distributed throughout a parachute 
canopy to provide real-time estimates of canopy motion which 
could be used as a feedback signal for autonomous control [10]. 
This approach relies on small, in-canopy sensor pods (ICSPs) con-
sisting of accelerometer, gyroscope, magnetometer, barometer, and 
GPS sensors which can be mounted within the canopies of a va-
riety of airdrop systems. Each pod has a low-power wireless ra-
dio for transmitting raw sensor data to a central processing unit 
mounted within the AGU, where state estimation is performed. 
Using the data from these pods, robust state estimation can be 
performed to estimate position, velocity, orientation, and rotation 
rates of the canopy itself. All sensors within the sensor pod pack-
age are low-cost and commercial grade, however the use of multi-
ple sensors coupled with a sensor fusion algorithm can provide 
accurate system state estimates without the need for expensive 
and bulky tactical grade sensors.

The current work presents simulation and flight test results of 
the use of ICSPs to provide feedback of the canopy motion. First, 
a description of the ICSP hardware is provided. Next, the estima-
tion algorithm used to fuse raw sensor data from multiple ICSPs 
into a useful estimate of canopy motion and orientation is pre-
sented. A strategy for modifying a typical navigation filter used for 
in-flight wind speed and heading estimation to incorporate feed-
back of the canopy heading angle is then provided. Simulation 
results are used to demonstrate the accuracy of the sensor fusion 
algorithm in identifying the “true” canopy states based on multi-
ple sources of synthetic sensor data with realistic noise models. 
Finally, flight test results from two different types of full-scale air-
drop systems are provided, demonstrating the ability of the ICSPs 
to provide greatly enhanced real-time feedback and improved un-
derstanding of canopy motion.

2. Hardware

2.1. In-canopy sensors

The in-canopy sensor pod (ICSP) consists of a wireless radio 
module with integrated microcontroller, a 9-axis MEMS IMU/mag-
netometer (3-axis accelerometer, 3-axis gyroscope, and 3-axis 
magnetometer), barometer, and a GPS module (see Fig. 1). Data 
from all sensors except the barometer are used for canopy state 
estimation. The barometer is not used since the sensors are inside 
the pressurized canopy. A lithium-polymer battery powers the pod. 
A micro-USB connection allows the device to be charged, and con-
figuration parameters to be changed without re-flashing firmware.
Fig. 1. Wireless in-canopy sensor pod (ICSP).

The microcontroller in the ICSP reads sensor data, provides 
some data filtering, applies calibration corrections, and transmits 
sensor data to the interface board. Accelerometer and gyroscope 
data are measured at 100 Hz, then filtered with a moving average 
filter. Data for the IMU, magnetometer, and barometer is transmit-
ted at 10 Hz, while GPS data is received and transmitted at 5 Hz.

2.2. Interface board

For ease of integration into an AGU, hardware was developed to 
interface between the AGU and the wireless network. This board 
has two wireless radios, a microcontroller capable of performing 
state estimation, datalogging capability, and an RS-232 serial com-
munication connection to the AGU (see Fig. 2).

Each radio module on the interface board has its own mi-
crocontroller, allowing it to offload message parsing tasks from 
the main microcontroller. The main microcontroller has an ARM 
Cortex-M4 processor with integrated floating-point unit (FPU), run-
ning at 120 MHz. This high performance MCU is capable of man-
aging received messages from the radios, communicating with the 
AGU, logging data, and performing state estimation with in-canopy 
sensor data simultaneously by running a Real-Time Operating Sys-
tem (RTOS). The integrated FPU, along with ARM’s CMSIS DSP 
software library allows the math-intensive state estimator with in-
canopy sensor data to be run in real-time, updating nominally at 
15 Hz, all while requiring less than 20% of the CPU load.
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Fig. 2. Interface board.

3. Estimator design

The basic design of this estimator was developed by Burdette, 
Costello, and Scheuermann, but has been modified for practical 
implementation and to improve accuracy by using the accelerom-
eter data, compensated by GPS measurements, to augment pitch 
and roll estimation [10]. The sensor network is inherently asyn-
chronous, so the estimator was designed to be agnostic to message 
ordering. A no-reset distributed federated Kalman filter with local 
extended Kalman filters is employed [10,11]. Each ICSP is not pow-
erful enough to perform its own state estimation, so the main MCU 
in the interface board runs a separate extended Kalman filter for 
each pod, and then fuses those results to provide a master esti-
mate for the canopy states. Since each pod has its own filter, the 
local filters are completely asynchronous. Each local filter is mon-
itored for faults such as disconnection, sensor saturation, incorrect 
pod installation/orientation, and stale data. The master filter is ex-
tremely robust, since it can provide state estimates even if all but 
one ICSP has failed, albeit with reduced accuracy.

3.1. Reference frame definitions

The inertial reference frame is a local north-east-down (NED) 
reference frame. The system then has a body frame of reference, 
with orientation of that reference frame with respect to the in-
ertial reference frame defined using conventional aerospace Euler 
angles. Finally, each sensor has a reference frame corresponding to 
the actual sensor axes of sensitivity. The canopy geometry is as-
sumed to be rigid once the canopy has inflated, implying that the 
transformation matrices between the sensor frames and the body 
frame are constant.

The transformation matrix between the body (B subscript) and 
inertial frame (I subscript), TIB , is defined in terms of the body 
frame Euler angles as follows, where cx = cos(x) and sx = sin(x):

TIB =
⎡
⎣ cθ cψ cθ sψ −sθ

sφsθ cψ − cφsψ sφsθ sψ + cφcψ sφcθ

cφsθ cψ + sφsψ cφsθ sψ − sφcψ cφcθ

⎤
⎦ (1)

⎧⎪⎨
⎪⎩

−→
I B
−−→
J B

−−→
K B

⎫⎪⎬
⎪⎭= [TIB]

⎧⎪⎨
⎪⎩

−→
I I
−→
J I

−−→
K I

⎫⎪⎬
⎪⎭ (2)

The transformation matrices between the sensor and body ref-
erence frames, T Si , are known before flight from the canopy geom-
etry and the orientation of the pouches in the canopy which hold 
the sensor pods.⎧⎪⎨
⎪⎩

−→
Isi−−→
J Si−−−→
K

⎫⎪⎬
⎪⎭= [T Si ]

⎧⎪⎨
⎪⎩

−→
I B
−−→
J B

−−→
K

⎫⎪⎬
⎪⎭ (3)
Si B
Finally, some vectors must be defined which consist of the offset 
in the body reference frame of each sensor node from the system 
center of mass. As with the sensor to body frame transformation 
matrices, these will change depending on the actual system setup 
and where the in-canopy sensors are installed.

−→r CG→Si = �xSi

−→
I B + �ySi

−→
J B + �zSi

−→
K B (4)

3.2. State and output definitions

For the implemented filter, there are 12 states per local filter 
(and one local filter per in-canopy sensor), 12 master filter states, 
and 14 output measurements. For the local filter states, the state 
vector is as follows:

Xi = [xi, yi, zi, φi, θi,ψi, ẋi, ẏi, żi, pbi,qbi, rbi]T (5)

These states are the position (xi, yi, zi ) in the inertial frame, the 
orientation of the system in Euler angles (φi, θi, ψi) the system ve-
locity in the inertial frame (ẋi, ẏi, ̇zi ), and the individual in-canopy 
sensor gyroscope bias in the sensor frame (pbi, qbi, rbi). Gyro bias 
in general changes over time, and therefore is estimated in real 
time.

For each of the local filters, a measurement vector is also de-
fined:

Yi = [xi, yi, zi, ẋi, ẏi, żi, Msxi , Msyi , Mszi , pbi,qbi, rbi, φi, θi]T (6)

The position and velocity measurements (xi, yi, zi, ̇xi, ẏi, ̇zi ) come 
from the GPS receiver, the magnetic field outputs (Msxi , Msyi , Mszi ) 
are the magnetic field measurements in the sensor reference 
frame, the gyro bias outputs (pbi, qbi, rbi) come from comparing 
the master filter estimated rotation with the individual sensor gy-
roscope measurement, and the orientation outputs (φi, θi ) are gen-
erated from the accelerometer measurements. Yaw is not explic-
itly included in the measurement vector, but is implicitly included 
through the magnetic field measurements.

The master filter states are then defined as follows:

Xm = [xm, ym, zm, φm, θm,ψm, ẋm, ẏm, żm, pm,qm, rm]T (7)

The position, orientation, and translational velocity states (xm, ym,

zm, φm, θm, ψm, ̇xm, ẏm, ̇zm) are all defined in the same way as for 
the local state estimators, and the m subscript denotes this is the 
master state. The final states, rotational velocity states (pm, qm, rm), 
are the system’s rotational velocity in the system body frame. Note 
the master filter provides angular velocity estimates, rather than 
the angular velocity bias values in the local filters.

3.3. State propagation equations

The local filter state time derivatives are as follows:⎡
⎣ ẋi

ẏi
żi

⎤
⎦=

⎡
⎣ ẋi

ẏi
żi

⎤
⎦ (8)

⎡
⎣ ẍi

ÿi
z̈i

⎤
⎦= [TIB]T [T Si ]T

⎡
⎣ axi

ayi

azi

⎤
⎦+

⎡
⎣ 0

0
g

⎤
⎦ (9)

⎡
⎣ φ̇i

θ̇i

ψ̇i

⎤
⎦=

⎡
⎢⎣

1 sφi tθi cφi tθi

0 cφi −sφi

0
sφi
cθi

cφi
cθi

⎤
⎥⎦ [T Si ]T

⎡
⎣ pi − pbi

qi − qbi
ri − rbi

⎤
⎦ (10)

⎡
⎣ ṗbi

q̇bi
q̇

⎤
⎦=

⎡
⎣ 0

0
0

⎤
⎦ (11)
bi
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These state propagation equations use accelerometer (compensated 
for the gravity vector) and gyroscope (compensated with the bias 
estimate) data to generate the state time derivatives. These equa-
tions are numerically integrated to propagate the state. The lin-
earized dynamics are used to propagate the estimation error co-
variance.

3.4. Output feedback

For each sensor, a measurement signal used within the Kalman 
filter update step is generated. In the case of a GPS measurement, 
the measurement signal is directly obtained from the sensor:⎡
⎣ xi

yi
zi

⎤
⎦=

⎡
⎣ xgps

ygps

zgps

⎤
⎦ (12)

⎡
⎣ ẋi

ẏi
żi

⎤
⎦=

⎡
⎣ ẋgps

ẏgps

żgps

⎤
⎦ (13)

For the magnetometer, the measurement in each axis of sensitiv-
ity is normalized by the total field strength before use since the 
calibration routine performed on the magnetometers before flight 
does not correct for absolute scale factors for each axis, but rather 
the relative scale factors between axes. It therefore can still pro-
vide information about the direction of the local magnetic field, 
but not necessarily accurate measurements of the field strength:

⎡
⎣ Msxi

Msyi

Mszi

⎤
⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

Mxmag√
M2

xmag +M2
ymag +M2

zmag

M ymag√
M2

xmag +M2
ymag +M2

zmag

Mzmag√
M2

xmag +M2
ymag +M2

zmag

⎤
⎥⎥⎥⎥⎥⎥⎦

(14)

For the gyroscope, the “measured” bias is determined by subtract-
ing the master estimate of the system rotation rates from the raw, 
measured rotation rates for that sensor:⎡
⎣ pbi

qbi
rbi

⎤
⎦=

⎡
⎣ pi

qi
ri

⎤
⎦− [T Si ]

⎡
⎣ pm

qm

rm

⎤
⎦ (15)

Finally, accelerometer measurements are used to augment pitch 
and roll estimation. The accelerometer measures the total acceler-
ation in the sensor reference frame, and includes both the gravity 
vector and vehicle acceleration. The GPS-based compensation ap-
proach used by Kingston and Beard was used to calculate the roll 
and pitch [12]. The acceleration of the system in the inertial frame 
is calculated using a discrete derivative of the GPS velocity. This 
measurement, plus gravitational acceleration should be equal to 
the measurements from the accelerometer once rotated into the 
correct reference frame. These equations can be solved for the roll 
and pitch assuming the yaw estimate is known [12]:⎡
⎣ aGPSx

aGPSy

aGPSz − g

⎤
⎦= [TIB]T [T Si ]T

⎡
⎣ axi

ayi

azi

⎤
⎦ (16)

⎡
⎣ rx

ry

rz

⎤
⎦=

⎡
⎣ cos(ψ)aGPSx + sin(ψ)aGPSy

− sin(ψ)aGPSx + cos(ψ)aGPSy

aGPSz − g

⎤
⎦ (17)

σθ = rxax + rz

√
r2

x + r2
z − a2

x
2 2

(18)

rx + rz
θ = − tan−1
(

σθ rx − ax

σθ rz

)
(19)

rθ = rx sin(θ) + rz cos(θ) (20)

σφ =
ryay + rθ

√
r2

y + r2
θ − a2

y

r2
y + r2

θ

(21)

φ = − tan−1
(

σφry − ay

σφrθ

)
(22)

The expected output vector Ŷ elements are set to their corre-
sponding estimated values from the system state estimates, except 
for the magnetometer readings since those do not have a corre-
sponding estimated value. Instead, a normalized estimate of the 
Earth’s magnetic field is generated for the system’s current loca-
tion using the World Magnetic Model [13].

⎡
⎣ Msxi

Msyi

Mszi

⎤
⎦= [T Si ][TIB]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Mxmodel√
M2

xmodel
+M2

ymodel
+M2

zmodel

M ymodel√
M2

xmodel
+M2

ymodel
+M2

zmodel

Mzmodel√
M2

xmodel
+M2

ymodel
+M2

zmodel

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(23)

The magnetic field vector is in the inertial reference frame, and 
it is transformed into the respective sensor frame using the es-
timated orientations to generate the transformation matrix. Note 
that this mapping is nonlinear, and so it is linearized to form part 
of the C matrix in the Kalman filtering step.

3.5. Distributed federated Kalman filter

The distributed federated Kalman filtering approach consists of 
carrying out the local filter operations disjoint from each other, 
and then combining them to generate a so-called master state es-
timate, which is the best estimate of the system states. Performing 
filtering this way versus the traditional centralized Kalman filter in 
which all data is processed at once is computationally more effi-
cient and offers more robust error detection and fault handling.

There are numerous methods for performing the local filter 
state merging step, with varying degrees of optimality, efficiency, 
and robustness. The unweighted averaging method is used here.

Using unweighted averaging, the states from the N local fil-
ters are combined as an unweighted average. There is no master 
Kalman filter, but rather a simple merging step that combines the 
results from the local filters. Of course, care must be taken when 
averaging the orientations, due to their periodic nature:⎡
⎣ xm

ym

zm

⎤
⎦= 1

N

N∑
i=1

⎛
⎝
⎡
⎣ xi

yi
zi

⎤
⎦− [TIB]T −→r CG→Si

⎞
⎠ (24)

⎡
⎣ φm

θm

ψm

⎤
⎦=

⎡
⎢⎣

atan 2( 1
N

∑N
i=1 sinφi,

1
N

∑N
i=1 cosφi)

atan 2( 1
N

∑N
i=1 sin θi,

1
N

∑N
i=1 cos θi)

atan 2( 1
N

∑N
i=1 sinψi,

1
N

∑N
i=1 cosψi)

⎤
⎥⎦ (25)

⎡
⎣ ẋm

ẏm

żm

⎤
⎦= 1

N

N∑
i=1

⎛
⎝
⎡
⎣ ẋi

ẏi
żi

⎤
⎦− [TIB]T [S(

−→ω B
I
)
]−→r CG→Si

⎞
⎠ (26)

⎡
⎣ pm

qm

rm

⎤
⎦= 1

N

N∑
i=1

⎛
⎝[T Si ]T

⎡
⎣ pgyro − pbi

qgyro − qbi
rgyro − rbi

⎤
⎦
⎞
⎠ (27)

This method is computationally efficient and allows for fairly 
robust error checking since the local filter results can all be com-
pared to each other and outliers rejected. It is also extremely 
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Fig. 3. Vector diagram decomposing ground track vector.

flexible, since if more sensors are added, the summation simply 
changes. If one sensor powers off mid-flight, the system can rec-
ognize this, and simply ignore it during the summation process.

3.6. Flight software integration

ICSP estimates can be used immediately to improve other esti-
mates within the flight software’s navigation filter. Existing guided 
airdrop flight software was modified to enable the use of ICSP 
feedback for closed loop control of a parachute system and to aug-
ment estimation of the wind field [14]. The standard navigation 
problem for guided airdrop systems centers on the solution of the 
vector diagram in Fig. 3. The ground track velocity is measured 
with GPS. Airspeed can be determined from system identification 
techniques, accomplished either using previous flight data or in 
real-time. However, with only an assumed airspeed and a measure-
ment of the ground track vector, a unique solution to the vector 
diagram does not exist. The solution employed for typical airdrop 
systems is to gather measurements over varying heading angles 
and solve the resulting vector diagrams simultaneously by assum-
ing a constant wind vector. This is typically performed in real-time 
using an extended Kalman filter [15]. The filter is tuned based on 
the assumption that the wind does not change over a complete 
turn, and as long as there is variation in the ground course the 
filter will remain stable. Note that solution of the vector diagram 
does not directly yield an estimate of the heading angle ψ , but 
rather the azimuth angle χ0. The two are related by the sideslip 
angle β , which is normally assumed to be negligible for airdrop 
systems.

If an estimate of the heading angle can be provided using data 
from the ICSPs, solution of the vector diagram is greatly simplified. 
In fact, if the typical assumptions of known airspeed and negligi-
ble sideslip are made, the vector diagram can be solved directly 
and no navigation filter is required. However, these same assump-
tions also represent drawbacks to this approach. While a nominal 
value for the airspeed may be known to a fairly high degree of 
accuracy, there can be substantial variations in the system’s air-
speed as it maneuvers or encounters turbulence. Similarly, while 
it should be a safe assumption that the sideslip angle is nomi-
nally zero, the system may develop significant sideslip angles as 
it maneuvers and encounters turbulence. Furthermore, the head-
ing measurement provided from the ICSP state estimator is not 
perfect, so some noise and possibly bias from the true heading is 
expected.

The approach taken here is to use an extended Kalman filter 
similar to the one used for standard airdrop navigation. The fil-
ter is formed based on the same vector diagram, with the system 
heading angle and ground track vector provided as measurements. 
The states in the filter are the wind vector components, the filtered 
heading angle estimate, and error terms representing variations in 
true heading from the measurement and true airspeed from the 
assumed airspeed. The equations defining the state and measure-
ment update equations for the filter are given in Tables 1 and 2.
Table 1
State prediction equations for navigation filter.

States xP ,k+1 = fk +nk

North Wind Component (m/s) V W X,k+1 = V W X,k +nV W

East Wind Component (m/s) V W Y ,k+1 = V W Y ,k +nV W

Heading (rad) ψk+1 = ψk +nψ

Heading Error (rad) �ψk+1 = �ψk +n�ψ

Airspeed Error (m/s) V E,k+1 = V E,k +nV E

Table 2
Measurement update equations for navigation filter.

Measurement vk = gk +wk

North GPS Velocity Component (m/s) V X,k = V 0 cos(ψk) + V W X,k +nVGPS

East GPS Velocity Component (m/s) V Y ,k = V 0 sin(ψk) + V W Y ,k +nVGPS

Measured Heading (rad) ψM,k = ψk + �ψk +nψM

The airspeed used for the measurement update equations, V 0, 
is simply the sum of the assumed nominal airspeed and the air-
speed error state in the filter, V E . These state and measurement 
relationships are used to develop a standard extended Kalman fil-
ter.

4. Simulation model description

A 6-DOF parafoil simulation environment was used to test 
the estimator against truth data, using the model described in 
[16]. Synthetic ICSP data with realistic error sources are gener-
ated within the model, and provided to the ICSP estimator. This 
simulation also features flight software with closed loop control. 
The flight software generates its own estimates of certain states, 
such as heading and heading rate, from AGU GPS data alone. The 
estimates from the flight software using only AGU GPS and the 
ICSP estimates are compared to truth data to gauge their accu-
racy.

4.1. System dynamics

The system states consist of the position in a North-East-Down 
reference frame (x, y, x), the orientation defined by Euler angles 
(φ, θ, ψ ), the ground-relative body-frame velocity (u, v, w), and 
the ground-relative body-frame rotation rates (p, q, r):

X = [x, y, z, φ, θ,ψ, u, v, w, p,q, r]T (28)

The kinematics equations for the system are therefore:⎧⎨
⎩

ẋ
ẏ
ż

⎫⎬
⎭= [TIB]T

⎧⎨
⎩

u
v
w

⎫⎬
⎭ (29)

⎧⎨
⎩

φ̇

θ̇

ψ̇

⎫⎬
⎭=

⎡
⎣ 1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

⎤
⎦
⎧⎨
⎩

p
q
r

⎫⎬
⎭ (30)

where the matrix TIB is a rotational transformation matrix from an 
inertial reference frame to the body reference frame.

TIB =
⎡
⎣ cθ cψ cθ sψ −sθ

sφsθ cψ − cφsψ sφsθ sψ + cφcψ sφcθ

cφsθ cψ + sφsψ cφsθ sψ − sφcψ cφcθ

⎤
⎦ (31)

The dynamics equations are then formed as:⎧⎨
⎩

u̇
v̇
ẇ

⎫⎬
⎭= 1

m

(
F W + F A + F S + F AM +

N∑
i=1

F B Ai

)
− S B

ω

⎧⎨
⎩

u
v
w

⎫⎬
⎭
(32)
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⎧⎨
⎩

ṗ
q̇
ṙ

⎫⎬
⎭= [IT ]−1

(
M A + M AM + S B

CG,P F A + S B
CG,S F S + S B

CG,M F AM

+
N∑

i=1

(
S B

CG,B Ai
F B Ai

)− S B
ω[IT ]

⎧⎨
⎩

p
q
r

⎫⎬
⎭
)

(33)

where m is the system mass, IT is the system inertia matrix, 
F A, M A are the aerodynamic force and moment vectors in the body 
reference frame, F AM , M AM are the apparent mass force and mo-
ment vectors in the body reference frame, F S is the payload drag 
in the body reference frame, F W is the weight vector in the body 
reference frame, S B

ω is the cross-product matrix of angular veloc-
ity in the body reference frame, and S B

CG,P , S B
CG,S , S B

CG,M are the 
cross-product matrices of the vector from the center of mass to the 
aerodynamic center, payload, and apparent mass center, respec-
tively. F B Ai is the aerodynamic force vector caused by activation 
of the ith bleed air actuator, and S B

CG,B Ai
is the cross-product ma-

trix of the vector from the center of mass to the location of the 
ith bleed air actuator [17]. The aerodynamic force and moment 
perturbations from bleed air actuators are summed over the N ac-
tuators in the system. The weight force is given by the following, 
where m is the system mass and g is the gravitational accelera-
tion:

F W = mg

⎧⎨
⎩

−sθ

sφcθ

cφcθ

⎫⎬
⎭ (34)

The aerodynamic forces are then generated as follows. First, the 
aerodynamic translational and rotational velocities are calculated, 
taking into account atmospheric wind velocity:⎧⎪⎨
⎪⎩

u A,CG

v A,CG

w A,CG

⎫⎪⎬
⎪⎭=

⎧⎪⎨
⎪⎩

u − uwind

v − v wind

w − w wind

⎫⎪⎬
⎪⎭ (35)

⎧⎪⎨
⎪⎩

p A,CG

qA,CG

rA,CG

⎫⎪⎬
⎪⎭=

⎧⎪⎨
⎪⎩

p − pwind

q − qwind

r − rwind

⎫⎪⎬
⎪⎭ (36)

The payload aerodynamic loads are then formed. First the aerody-
namic velocity of the payload in the body frame is found, then the 
forces are calculated, where ρ is the air density, S S is the payload 
reference area, and C D S is the payload drag coefficient:⎧⎪⎨
⎪⎩

uS

v S

w S

⎫⎪⎬
⎪⎭=

⎧⎪⎨
⎪⎩

u A,CG

v A,CG

w A,CG

⎫⎪⎬
⎪⎭+ S B

ωA,CG

⎧⎪⎨
⎪⎩

�xS

�yS

�zs

⎫⎪⎬
⎪⎭ (37)

V S =
√

u2
S + v2

S + w2
S (38)

F S = −1

2
ρV S S S C D S

⎧⎪⎨
⎪⎩

uS

v S

w S

⎫⎪⎬
⎪⎭ (39)

The canopy aerodynamics are then calculated as follows, where Γ
is the canopy incidence angle, and T BC is the single axis transfor-
mation matrix from body reference frame to the canopy reference 
frame:⎧⎨
⎩

ũ
ṽ
w̃

⎫⎬
⎭= [T BC ]

⎛
⎝
⎧⎨
⎩

u A,CG

v A,CG

w

⎫⎬
⎭+ S B

ω

⎧⎨
⎩

�xc

�yc

�z

⎫⎬
⎭
⎞
⎠ (40)
A,CG c
⎧⎨
⎩

p̃
q̃
r̃

⎫⎬
⎭= [T BC ]

⎧⎨
⎩

p A,CG

qA,CG

rA,CG

⎫⎬
⎭ (41)

T BC =
⎡
⎣ cΓ 0 −sΓ

0 1 0
sΓ 0 cΓ

⎤
⎦ (42)

V A =
√

ũ2 + ṽ2 + w̃2 (43)

α = atan

(
w̃

ũ

)
(44)

β = asin

(
ṽ

V A

)
(45)

F A = 1

2
ρV 2

A S p

⎧⎨
⎩

− cos(Γ − α)C D P − sin(Γ − α)CL P

Cγ

sin(Γ − α)C D P − cos(Γ − α)CL P

⎫⎬
⎭ (46)

M A = 1

2
ρV 2

A S p[T BC ]T

×

⎧⎪⎪⎨
⎪⎪⎩

b2

2V A
(Clp p̃ + Clr r̃) + bClδaδa

c2

2V A
Cmq

b2

2V A
(Cnp p̃ + Cnrr̃) + bCnββ + bCnδaδa

⎫⎪⎪⎬
⎪⎪⎭ (47)

In the above equations, b is the canopy span, c is the canopy main 
chord, α is the angle of attack, β is the sideslip angle, δa is the 
asymmetric control input, and Clp , Clr , Clδa , Cmq , Cnp , Cnr , Cnβ , 
Cnδa are all aerodynamic coefficients.

The bleed air actuators are each modeled as follows, in the 
body reference frame:

F B Ai = 1

2
ρV 2

A S B A

⎧⎨
⎩

−CdB AδB Ai

0
−ClB AδB Ai

⎫⎬
⎭ (48)

Here, CdB A is a drag control sensitivity coefficient, ClB A is a lift 
control sensitivity coefficient, S B A is the reference area of the 
bleed air model, and δB A is the normalized line position of the 
actuator (actual line position divided by maximum line displace-
ment).

Parafoils have a low mass-to-volume ratio, so apparent mass 
effects substantially contribute to the system dynamics. The appar-
ent mass force and moments equations create a coupling between 
the rotational and translational system dynamics, so that the total 
system dynamics must be found as a matrix solution. Define the 
following, where A, B, C, P , Q , R are apparent mass and apparent 
inertia coefficients from the surrounding fluid that is accelerated 
by the canopy as it is in motion.

F = F W + F A + F S +
N∑

i=1

F B Ai − mS B
ω

⎧⎨
⎩

u
v
w

⎫⎬
⎭ (49)

M = M A + S B
CG,P F A + S B

CG,S F S +
N∑

i=1

(
S B

CG,B Ai
F B Ai

)

− S B
ω[IT ]

⎧⎨
⎩

p
q
r

⎫⎬
⎭ (50)

I ′AM = [T BC ]T

⎡
⎣ A 0 0

0 B 0
0 0 C

⎤
⎦ [T BC ] (51)

I ′AI = [T BC ]T

⎡
⎣ P 0 0

0 Q 0
0 0 R

⎤
⎦ [T BC ] (52)
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Then, solve the following system of equations:

[
m[I] + [I ′AM ] −[I ′AM ]S B

CG,M
S B

CG,M [I ′AM ] [IT ] + [I ′AI ] − S B
CG,M [I ′AM ]S B

CG,M

]
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u̇
v̇
ẇ
ṗ
q̇
ṙ

⎫⎪⎪⎪⎪⎪⎬
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=
{

F
M

}
(53)

4.2. Wind model

Airdrop system performance is greatly affected by wind condi-
tions. It is therefore critical that an accurate wind model is used 
within the simulation environment. The wind field used in the 
simulation consists of the combination of an altitude-varying mean 
wind field and turbulence. The discrete Dryden turbulence model 
is used here, as described in Military Specification MIL-F-8785C 
[18].

4.3. Synthetic sensor data generation

This simulation has the ability to generate synthetic ICSP and 
AGU GPS data. All sensor data is generated at a nominal rate, with 
some jitter in the actual rate. Each sensor type has a noise and 
error model. It is assumed that the system is effectively rigid, so 
that rigid body kinematics apply between the system truth states 
and the sensors within the canopy. In addition to the noise and 
error models of each sensor channel, the orientation and position 
of the modeled sensors is perturbed from what is assumed in the 
estimator, to model uncertainty in those parameters.

4.3.1. GPS
The GPS sensor model provides position, velocity, and time 

data. The position and velocities are generated by using the truth 
states from the parafoil simulation and adding exponentially cor-
related Gaussian noise. The true value of the GPS sensor is yk , vk

is the measured value, and nk is the measurement noise. This data 
is then discretized into integer values, saturating as necessary:

vk = yk + nk (54)

nk = e− �t
τ nk−1 + ξk

√
1 − e− 2�t

τ (55)

ξk ∼ N(0,σ ) (56)

4.3.2. Accelerometer
A 3-axis accelerometer model provides the acceleration vec-

tor at a point of interest. First the truth acceleration values are 
generated from the simulation model, including the gravity vec-
tor. Scale factor errors and cross-axis sensitivity are applied. Then, 
bias values are added, modeled as a random walk process. Next, 
zero-mean Gaussian noise is added to each axis. Finally, the ac-
celerometer data is discretized into 16-bit signed integer values 
for each axis, saturating as necessary.

4.3.3. Gyroscope
A 3-axis gyroscope model generates angular velocity vector data 

on a body of interest. First the truth rotational rate values are 
generated from the simulation model. Scale factor errors and cross-
axis sensitivity are applied. Then, bias values are added, modeled
as a random walk process. Next, zero-mean Gaussian noise is 
added to each axis. Finally, the gyroscope data is discretized into 
16-bit signed integer values for each axis, saturating as necessary.
Table 3
Sensor model error parameters.

Parameter Value Parameter Value

GPS horizontal velocity σ 0.2 m/s GPS horizontal position σ 2.0 m
GPS horizontal velocity τ 1.0 s GPS horizontal position τ 20.0 s
GPS vertical velocity σ 0.2 m/s GPS vertical position σ 2.0 m
GPS vertical velocity τ 1.0 s GPS vertical position τ 20.0 s
Accelerometer noise std. dev. 0.05 g Magnetometer noise std. dev. 0.5 μT
Gyro noise std. dev. 2.5◦/s Gyroscope initial biases 1.0◦/s
Accelerometer initial biases 0.003 g Magnetometer initial biases 1.0 μT

Fig. 4. Example MC5 system, canopy sensor pod mounting locations near the center 
and wind tips are indicated by rings.

4.3.4. Magnetometer
A 3-axis magnetometer model provides the Earth’s magnetic 

field vector data at a point of interest. First the truth magnetic field 
values are generated using the World Magnetic Model. Scale factor 
errors and cross-axis sensitivity are applied. Then, bias values are 
added, modeled as a random walk process. Next, zero-mean Gaus-
sian noise is added to each axis. Finally, the magnetometer data is 
discretized into 14-bit signed integer values for each axis, saturat-
ing as necessary.

5. Estimator performance

The simulation was used to test the ICSP state estimator and 
compare its performance to conventional methods using GPS mea-
surements alone. The simulation uses accurate, previously vali-
dated models. Since it is a simulation, all truth states are known 
and can be directly compared to the generated state estimates. For 
this simulation, the sensor error model parameters are shown in 
Table 3.

5.1. MC5 system

The estimator was tested in simulation with a model of a MC5 
system. The MC5 is a retired personnel ram-air parafoil with typi-
cal total weight range of 200-500 pounds. This canopy is shown in 
Fig. 4.

The ICSP estimator is able to accurately track heading and head-
ing rate. Fig. 5 shows these truth states, as well as the ICSP esti-
mate and the GPS-only estimate as the flight software performs a 
turn. The ICSP estimate is much closer to the truth state than the 
GPS-only estimate. In particular, the heading rate estimate is able 
to track changes with much less lag and is able to begin estimation 
much sooner after the start of flight.
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Fig. 5. Heading and heading rate truth and estimates during start of flight for simu-
lated MC5.

Fig. 6. Heading and heading rate estimator errors for simulated MC5 flight.

Table 4
Statistics on heading and heading rate estimate errors for simulated MC5 system.

Mean of absolute 
value

Mean Standard 
deviation

ICSP heading error 3.11◦ −0.50◦ 3.81◦
GPS-only heading error 8.54◦ −0.36◦ 11.40◦
ICSP heading rate error 1.30◦/s −0.68◦/s 1.64◦/s
GPS-only heading rate error 3.60◦/s 0.04◦/s 4.81◦/s

Indeed, throughout the entire simulated flight, the ICSP head-
ing and heading rate estimates are typically much better than the 
GPS-only estimates. Fig. 6 shows the heading and heading rate es-
timation errors throughout the simulated flight. The heading rate 
error especially is much better for the ICSP estimator. Since it uses 
data from the in-canopy gyroscopes, it can recognize changes in 
heading rate quickly, while the GPS-only estimator must observe 
these changes through inertial position and velocity changes; this 
inherently adds lag.

Table 4 provides some statistics about the accuracy of the ICSP 
and the GPS-only estimates of heading and heading rate for this 
simulated MC5 system.

Since wind field estimation is coupled with heading estimation, 
it is expected that the improved heading estimates from the ICSPs 
will lead to better wind field estimates [15]. Fig. 7 shows the truth 
wind field and the estimates using ICSPs and GPS-only.

The ICSP estimator provides complete orientation estimates of 
the system. Fig. 8 shows that these estimates track the truth states 
quite well.
Fig. 7. Wind field truth and estimates using both the ICSP and GPS-only heading 
estimate within the wind field estimator for a simulated MC5.

Fig. 8. Orientation estimate and truth values of a simulated MC5 system.

Fig. 9. Example T-10 7TU system, with the in-canopy sensor pod mounting locations 
on each side indicated by rings.

5.2. T-10 7TU system

The ICSP estimator was also tested using a model of a T-10 
7TU system, as shown in Fig. 9. This system consists of a steerable 
round canopy and has a typical maximum weight range of 360 lbs. 
Two ICSPs are installed inside the canopy.

As it is a steerable round canopy, the T-10 7TU is a much lower 
horizontal airspeed system than parafoil systems of comparable ca-
pacity. This forces consecutive GPS datapoints closer together in 
space, and makes the task of estimating heading and heading rate 
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Fig. 10. Heading and heading rate truth and estimates for the simulated T-10 7TU.

Fig. 11. Heading and heading rate estimation errors for a simulated T-10 7TU sys-
tem.

Table 5
Statistics on heading and heading rate estimate errors for simulated T10 system.

Mean of absolute 
value

Mean Standard 
deviation

ICSP heading error 1.96◦ −1.28◦ 2.13◦
GPS-only heading error 84.93◦ 68.86◦ 85.61◦
ICSP heading rate error 0.84◦/s −0.63◦/s 0.85◦/s
GPS-only heading rate error 1.50◦/s 0.19◦/s 2.3◦/s

with only GPS much more difficult. This canopy can turn nearly 
in place, changing its heading without changing the information 
that GPS can provide. When this occurs, heading is unobservable 
to the GPS-only estimator. In addition, due to the low glide slope 
of the system, if it is released a significant distance from the tar-
get, a typical guidance strategy is to point at the target and glide 
as far as possible. This can result in a flight with nearly constant 
course, and so the coupled wind-field and heading estimator using 
GPS alone can diverge from the truth. Fig. 10 shows an example 
case. The system has long sections of nearly constant heading, and 
the ICSP estimator is able to track the truth throughout while the 
GPS-only estimator diverges.

Fig. 11 shows the heading and heading rate estimation errors 
for both the ICSP and GPS-only methods. The inverted spikes are 
heading wrapping between ±180 deg. Clearly, the GPS-only head-
ing estimates quickly become useless for controlling this system. 
Table 5 provides statistics about these errors, showing that the 
ICSP estimator provides better heading and heading rate estimates 
than the GPS-only estimator.

Fig. 12 shows the wind field during this simulation. Since the 
wind field estimate is linked with the system heading estimate, the 
Fig. 12. Wind field truth and estimates using both the ICSP and GPS-only heading 
estimate within the wind field estimator for a simulated T-10 7TU.

Table 6
Statistics on wind estimate errors for simulated T10 system.

Mean of absolute 
value [m/s]

Mean 
[m/s]

Standard 
deviation 
[m/s]

North wind error, ICSP est. 0.33 −0.21 0.83
East wind error, ICSP est. 0.44 0.19 0.70
North wind error, GPS-only est. 2.59 2.37 2.08
East wind error, GPS-only est. 3.15 2.58 3.10

system is able to recognize the wind shift much more accurately 
using the ICSP estimator feedback than GPS-only. The GPS-only es-
timator believed that the wind shift at 2000 m was due to a turn, 
whereas the ICSP estimator is able to recognize the change in wind 
and track heading correctly. Table 6 provides statistics about the 
wind field estimates shown in Fig. 12.

6. Flight experimentation results

To test the ICSP state estimator, it was run in real-time dur-
ing flights of the two different types of airdrop systems previously 
simulated. Flight testing was conducted in Eloy, AZ over a one 
week period. The first type of system utilizes an MC5 ram-air 
canopy. Ram-air canopies have become the standard for guided air-
drop systems. The second type of canopy is a modified T-10 round 
parachute, which offers lower gliding performance but also lower 
cost compared to a ram-air parachute.

Heading and heading rate are shown for one flight of each type 
of system flown with the estimator. Although the ICSP estimator 
provides a full state estimate of position, velocity, orientation, and 
rotation rates, heading and heading rate are of most interest. These 
states are critical to GNC, yet can be difficult to estimate using only 
GPS, especially in cases of significant sideslip, or minimal ground 
speed such as when flying into the wind.

6.1. MC5 system

The MC5 system shown in Fig. 4 typically has a total rigged 
weight (TRW) of between 200 and 500 lbs. Flight test results are 
shown for a TRW of 245 lbs. Three ICSPs are used within this 
canopy, one at each wingtip and one near the center. Each pod 
is mounted inside a pouch sewn into a rib of a cell.

Fig. 13 shows the heading and heading rate estimates for a sec-
tion of an MC5 flight. The inverted spikes are heading wrapping 
between ±180 deg. The ICSP estimator and GPS-only estimator re-
sults are shown, as well as heading and heading rate calculated in 
post-processing from GPS data. The GPS data is post processed us-
ing the AGU GPS data, with a zero-lag Kalman filter. It therefore 
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Fig. 13. Heading and heading rate estimates for a section of an MC5 system flight.

Fig. 14. Comparison of wind estimates from AGU based navigation vs. ICSP based 
navigation for an MC5 flight.

represents a best estimate of heading and heading rate from GPS 
without any delays that are inherent in a real-time estimator. This 
post-processing method is non-causal, so cannot be used in-flight, 
but represents a better reference than the in-flight GPS-only es-
timate. Throughout the flight, the ICSP estimates are often closer 
to the post-processed results than the in-flight GPS-only estimates, 
indicating the ICSP estimator is producing trustworthy estimates.

Fig. 14 compares the wind field estimates generated using GPS-
only and using the ICSP estimates. While there is no truth signal 
to compare to, it is clear that estimates using the ICSP data vary 
much quicker. Ideally, this means the estimator is able to recog-
nize changes in the wind field more quickly than if only GPS data 
were used.

Aggressive maneuvers can be unobservable, or nearly so, to 
the GPS-only estimator, and while they could be useful for shed-
ding altitude under windy conditions, such maneuvers are typically 
avoided since they would need to be performed open-loop. On 
the other hand, the ICSP estimator is able to provide state es-
timates throughout highly acrobatic turns. During flight testing, 
the MC5 system was intentionally flown into a right-hand spiral. 
Fig. 15 shows the heading and heading rate estimates for the sys-
tem throughout this maneuver.

The ICSP estimator is able to sense the right-hand turn, and 
continually estimate heading throughout. The heading rate esti-
mate also is around the expected magnitude. GPS-only estimation 
is completely unable to perform heading or heading rate estima-
tion throughout this spiral, and even estimates a heading rate in 
the wrong direction.
Fig. 15. Heading and heading rate estimates through a spiral on the MC5 system.

Fig. 16. Heading and heading rate estimates for a section of a T-10 7TU system 
flight.

6.2. T-10 7TU system

The behavior of the T-10 7TU is quite different from a ram-
air gliding parachute. It can be manufactured for a much lower 
cost than a comparably sized ram-air parachute, but it is capable 
of a glide slope of about 0.6 compared to typical glide ratios of 
2–3 for ram-air parachutes. This low glide ratio means that the 
T-10 has a much lower forward airspeed, which makes it even 
more difficult to separate the air-relative component of the canopy 
velocity from the measured ground track. Coupled with low yaw-
inertia, this makes the modified T-10 a particularly difficult type 
of parachute to steer autonomously when using only GPS feed-
back from the AGU. During flight experimentation, two sensor pods 
were installed in the T-10 system, one on each side of the canopy. 
Flight test results are shown for a TRW of 252 lbs. Fig. 9 shows the 
setup of this system.

Fig. 16 shows the heading and heading rate estimates for a sec-
tion of a T-10 7TU flight. The post-processed GPS estimate shows 
more oscillations in heading rate than the in-flight GPS estimate, 
and the oscillations tend to match well with those determined by 
the ICSP estimator, indicating it is providing higher fidelity feed-
back on the system’s motion.

Finally, the performance of the updated navigation filter which 
is taking in the heading measurement from the in-canopy based 
state estimator is compared to the typical GPS based filter used on 
current airdrop systems. There is no true wind profile to compare 
to in this case, but a simple comparison between the two navi-
gation solutions is enlightening. Fig. 17 shows the in-flight wind 
estimates obtained from the conventional AGU GPS based naviga-
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Fig. 17. Comparison of wind estimates from AGU based navigation vs. ICSP based 
navigation for a T-10 7TU flight.

tion filter vs. the estimates obtained from the updated filter that 
uses the ICSP data. The wind profiles look quite similar, but it is 
clear that the updated filter is tracking changes in the wind much 
more rapidly than the conventional GPS based filter. This promises 
to further enhance accuracy and robustness to variable wind con-
ditions by providing rapid and accurate in-flight updates to the 
measured wind profile.

7. Conclusion

Small, low-cost, lightweight in-canopy sensor pods (ICSPs) have 
been developed which can be distributed throughout a parachute 
canopy and used to provide accurate 6-DOF canopy state estimates 
when combined with a robust sensor fusion and state estimation 
algorithm. By design, this system allows for redundancy and flexi-
bility.

Performing state estimation using ICSPs has some advantages 
over the legacy approach which uses GPS only. The ICSPs are able 
to directly measure rotational velocity through their rate gyros, and 
therefore the ICSP state estimator can provide a more accurate ro-
tation rate estimate with reduced lag. In addition, the ICSP state 
estimator is able to estimate heading using magnetometer data, 
which enables wind field estimation during straight flight. The ICSP 
state estimator also does not experience degraded heading and 
heading rate estimation performance during low groundspeed situ-
ations, such as during aggressive maneuvering of a ram-air parafoil 
system, high headwind conditions, or normal flight of a low-glide 
steerable round canopy system.

The ICSP state estimator described here was tested in simula-
tion and experimental flight testing on ram-air parafoil (MC5) and 
steerable round (T-10 7TU) guided airdrop systems. In both simula-
tion and experimental testing, the ICSP estimator performed well. 
In simulation, the ICSP state estimates tracked truth states closely, 
with minimal lag, while the equivalent states estimated through 
GPS alone often showed significant overshoot and phase shift.
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