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Many towed systems consist of a parent platform moving along the ground, air, or water surface connected to a

towed vehicle via a tether line.Motion of a towed parafoil system can be complex and is driven bymotion of the parent

platform, canopy control inputs, andwind disturbances. A particularly problematic flight dynamic instability for this

system is canopy lockout, in which the canopy attains a large lateral offset and bank angle resulting in high line

tension. It is possible to use left and right brakes to return the system to its nominal position; however, if the lateral

offset and bank angle are too large, it is not possible to restore the system to a nominal position, and the lateral offset

and bank angle grows until impact with a ground surface. This paper explores the lockout phenomena using a

multibody simulation and identifies passive means to avoid the instability by locating the tether connection point

forward on the cradle in combinationwith sufficiently high cradle–canopy yaw stiffness.Moreover, it is shown that an

active control system that regulates canopy roll angle with parafoil brake inputs can eliminate the instability for the

tested configuration.

Nomenclature

A, B, C = Lamb’s coefficients for apparent mass, kg
b = canopy span, m
CB�v� = component operator for a vector ν in frame B
d = canopy arc radius, m
FB = force applied to system in B frame, N
MB = moment applied to system in B frame, N · m
�I� = identity matrix
�IT � = total system inertia matrix, kg · m2

L, M, N = components of moment vector in the body reference
frame, N · m

m = mass of subsystem, kg
P, Q, R = Lamb’s coefficients for apparent inertia, kg · m2

p, q, r = angular velocity components in the body reference
frame, rad∕s

~p, ~q, ~r = angular velocity components in the canopy
reference frame, rad∕s

S = aerodynamic reference area, m2

SB�v� = skew symmetric cross product operator for a vector ν
expressed in frame B

TIB = transformation matrix from inertial frame to body
frame

TB;i = transformation matrix from body frame to ith
canopy panel frame

u, v, w = velocity components of mass center in the body
reference frame, m∕s

~u, ~v, ~w = velocity components with respect to the air, m∕s
x, y, z = inertial positions of the system mass center, m
X, Y, Z = components of force in the body reference

frame, N
αi = angle of attack of the ith panel, rad
β = sideslip angle, rad
δ = dimensionless control deflection

φ, θ, ψ = Euler roll, pitch, and yaw angles, rad
χ = azimuth angle (course over ground), rad

Subscripts

A = aerodynamic
AM = apparent mass
C = cradle body frame
i = ith panel of the canopy
P = parafoil body frame
W = weight

I. Introduction

T OWED systems that consist of a moving platform and a towed
body are used in a diverse set of scenarios, including wind

energy extraction, entertainment, reconnaissance, communication,
and surveillance [1]. A towed parafoil and payload system is
composed of a parafoil and cradle combination connected via a tether.
The tether is connected to a parent platform such as a ground vehicle,
water vessel, or a fixed point. The ram-air parafoil uses incoming air
to inflate the parachute into a winglike structure, giving the system a
relatively large lift-to-drag ratio [2].
A particularly problematic flight dynamic instability is canopy

lockout, in which the canopy attains a large lateral offset and bank
angle, resulting in high line tension [3]. If an atmospheric disturbance
or the pilot/active control system steers the parafoil away from the
tether line of action, or if the bank angle grows, the canopy bank angle
and lateral offset will continue to grow until the canopy impacts the
ground or the tether line fails (Fig. 1). If the bank angle and lateral
offset are too large, it is not possible to return the system to its nominal
position, and the instability can only bemitigated by releasing the tow
line from the towed parafoil so that the parafoil returns to an open
loop glide. In some situations, lockout instability can bemitigated by
reducing line tension through timely tether line payout [4].
The lockout problem has been considered in the literature by

several authors. The work done by Terink, Breukel, Schmehl, and
Ockels [5] examined the flight dynamics and stability of a tethered
inflatable kiteplane. They showed a direct relationship between the
wing dihedral angle and vertical tail plane size to the stability of
towed flight using a 5 degree-of-freedom (DOF) model. Puranik [4]
performed a linear model analysis of different trim conditions of a
parafoil payload system as a function of atmospheric disturbances.
This work involved a complete static analysis based on different
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control inputs. A full state feedback controller was used to increase
the stability envelope of the system.
Research characterizing parafoil lockout have all employed 5DOF

models using two tether angles and three Euler angles for the parafoil
and cradle system. These models do not include relative rotation
between the cradle and the canopy, which can substantially affect
lockout mode stability. This paper explores the parafoil lockout
phenomena with a focus on both passive changes to the parafoil and
cradle system to increase the stable operating region of the system
and active roll control to expand the flight envelope of a towed
system. The paper begins by defining the system dynamic model,
composed of a 9 DOF parafoil and cradle model coupled to a tether
bead model. The simulation is subsequently employed to explore
practical and implementable passive geometric changes to the system
and active control to eliminate the lockout instability. Note, in this
analysis the tether parameters are held constant.

II. System Dynamic Model

The multibody system has three major parts: the parafoil, cradle,
and tether (Fig. 1). The isolated parafoil and cradle are represented

with 9 DOFs. The parafoil and cradle are each modeled as rigid
bodies connected via a gimbal joint located at the confluence point.
The tether ismodeled as amultibody systemby discretizing the tether
intoN beads, with each bead connected to each other with a standard
linear solid elastic element. Finally, a tow vehicle is assumed to be
traveling with known motion.

A. Parafoil and Cradle Dynamic Model

Figure 2 shows a schematic of the isolated parafoil and cradle [6].
In this model, a gimbal joint couples the parafoil and cradle
components at pointG. This gimbal joint allows both the parafoil and
the cradle to rotate freely about joint G, while still being constrained
by the force and moment at the joint. The parafoil is connected to the
gimbal joint via a rigid massless rod from the center of mass of the
parafoil to point G. Similarly, the cradle is connected to the gimbal
joint via another rigid massless rod. In practice, this system would
contain multiple rigging lines called risers, emanating from the
parafoil and connecting to the cradle at riser connection joints. The
distance from the parafoil and cradle center of mass to the gimbal
joint is denoted asWLParafoil andWLCradle, respectively.With the

Fig. 1 Towed system schematic with example lockout condition (parafoil and cradle not to scale).

Fig. 2 Schematic of parafoil and cradle dynamic model (not to scale).
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exception of movable parafoil brakes, the parafoil canopy is
considered to be a rigid body once it has completely inflated. The
model, however, breaks the canopy intomultiple flat-plate panels and
computes lift and drag at each panel. The total aerodynamic force is
then the summation of all forces on each panel. Figure 2 shows the left
and right brake lines, which modify the aerodynamic characteristics
of the canopy to increase lift and drag on the canopy. The origin of the
cradle frame is located at the center of mass of the cradle, with the ÎC
unit vector pointing forward and the ĴC unit vector pointing toward
the right side. The K̂C unit vector is oriented downward to complete
the orthonormal basis. The origin of the parafoil frame is also located
at the center of mass of the parafoil. The ÎP unit vector is oriented
forward. The angle between the ÎP unit vector and the mean camber
line of the canopy is denoted as the incidence angle of the canopy. The
ĴP unit vector is oriented to the right side of the parafoil and the K̂P

unit vector is oriented downwards to complete the orthonormal basis.
The tether line is connected to the cradle at point F. The forward

and downward distance from the center of mass of the cradle to the
tether connection point are denoted as WL Tether and SL Tether,
respectively. The coordinates used to model the parafoil and cradle
are three inertial position components of the joint G�xG; yG; zG�, as
well as the three Euler orientation angles of the parafoil canopy (ϕP,
θP, ψP) and the cradle (ϕC, θC, ψC). The development of this model
follows Slegers and Costello [6]. The kinematic equations for the
parafoil canopy and the cradle are provided in Eqs. (1–3)

8<
:

_xG
_yG
_zG

9=
; � TT

IP�ϕP; θP;ψP�
(
uG
vG
wG

)
(1)

8<
:

_ϕc
_θc
_ψc

9=
; � H�ϕc; θc;ψc�

(pc

qc
rc

)
(2)

8<
:

_ϕP
_θP
_ψP

9=
; � H�ϕP; θP;ψP�

(pP

qP
rP

)
(3)

in which the matrices T and H relate the body linear and angular
velocity components to the position of the gimbal joint and Euler
angles of the parafoil and cradle as given by Eq. (4) [7]

TT
IP�ϕ; θ;ψ� �

2
64
cθcψ sϕsθcψ − cϕsψ cϕsθcψ � sϕsψ

cθsψ sϕsθsψ � cϕcψ cϕsθsψ − sϕcψ

−sθ sϕcθ cϕcθ

3
75

H�ϕ; θ;ψ� �

2
664
1 sϕtθ cϕtθ

0 cϕ −sϕ
0 sϕ∕cθ cϕ∕cθ

3
775 (4)

The dynamic equations are formed by first separating the system at
the coupling joint, exposing the joint constraint force acting on both
bodies. The translational and rotational dynamic equations are
written for each body individually, creating a set of four vector
equations. Note that the cradle contains forces andmoments from the
tether

mPa�P∕I � FP
A − FP

AM � FP
W − FG (5)

mCa�C∕I � FC
A � FC

W � FG � FTnT
(6)

IdH�P∕I

dt
� MP

A −MP
AM −MG �

XN
i�1

r�P→Ai
× FP

Ai
− r�P→Mp

× FP
AM − r�P→G × FG (7)

IdH�C∕I

dt
� MG � r�C→G × FG � r�C→F × FTnT

(8)

The vectors r�P→Ai
, r�P→Mp

, and r�P→G are vectors from the
center of mass of the parafoil to the aerodynamic center of the ith
panel, apparent mass center, and gimbal joint G, respectively. The
vectors r�C→G and r�C→F are vectors from the center of mass of the
cradle to the gimbal jointG and to the connection point of the tether,
respectively. The acceleration and angular momentum time
derivative expressions in the translational and rotational dynamic
equations are described below:

a�P∕I � axpÎP � aypĴP � azpK̂P (9)

a�C∕I � axcÎC � aycĴC � azcK̂C (10)

IdH�P∕I

dt
� hxpÎP � hypĴP � hzpK̂P (11)

IdH�C∕I

dt
� hxpÎC � hypĴC � hzpK̂C (12)

in which

8><
>:
axp

ayp

azp

9>=
>; �

8><
>:

_uG

_vG

_wG

9>=
>;� SP�ωP∕I�

8><
>:

uG

vG

wG

9>=
>;� SP�r�P→G�

8><
>:

_pP

_qP

_rP

9>=
>;

− SP�ωP∕I�SP�ωP∕I�

8><
>:
xPG

yPG

zPG

9>=
>; (13)

8><
>:
axc

ayc

azc

9>=
>; � TICT

T
IP

0
B@
8><
>:

_uG

_vG

_wG

9>=
>;� SP�ωP∕I�

8><
>:

uG

vG

wG

9>=
>;
1
CA

� SC�r�C→G�

8><
>:

_pC

_qC

_rC

9>=
>; − SC�ωC∕I�SC�ωC∕I�

8><
>:
xCG

yCG

zCG

9>=
>; (14)

8<
:
hxp
hyp
hzp

9=
; � IP

(
_pP

_qP
_rP

)
� SP�ωP∕I�IP

(
pP

qP
rP

)
(15)

8<
:
hxc
hyc
hzc

9=
; � IC

8<
:

_pC

_qC
_rC

9=
;� SC�ωC∕I�IC

(
pC

qC
rC

)
(16)

Article in Advance / MONTALVO AND COSTELLO 3

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

Ja
nu

ar
y 

18
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

15
45

 



Note that the skew symmetric operator SB� � is used in Eqs. (13–
16). This operator uses the B frame components of a vector and
constructs a matrix such that the multiplication of this matrix by
another vector is equivalent to a cross product. The subscript PG
denotes the components of vector r�P→G. Thus, zPG � WL Parafoil.
The subscript CG denotes the components of vector r�C→G. Thus,
xCG � SL Tether and zCG � WL Tether. Forces on the canopy
include weight, standard aerodynamics, apparent mass aerody-
namics, and gimbal joint reaction forces. Forces on the cradle include
weight, standard aerodynamics, gimbal joint reaction forces, and the
force from the tether. The gimbal joint reaction loads are equal and
opposite on the two bodies. Moments on the canopy about its mass
center include standard aerodynamics, apparent mass aerodynamics,
and gimbal joint constraints. Moments on the cradle about its mass
center include gimbal joint constraints and moments from the tether
applied offset from the center of mass. The set of four translational
and rotational dynamic equations yields 12 scalar equations of
motion that can be written in a block form, as shown in the following
equations

�A�

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

_pC

_qC
_rC· · ·
_pP

_qP
_rP· · ·
_uG
_vG
_wG· · ·
FxG

FyG

FzG

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

�

8><
>:

B1

B2

B3

B4

9>=
>; (17)

A �

2
6664
mcSC�r�C→G� 0 mCTICT

T
IP −TIC

0 −IAMSP�rG→MP
� � IH �mpSP�r�P→G� mp � IAM TIP

IC 0 0 −SC�r�C→G�TIC

0 IP � SP�r�P→MP
��IH − IAMSP�rG→MP

�� − IHSP�rG→MP
� � IAI IH � SP�r�P→MP

�IAM SP�r�P→G�TIP

3
7775

in which

B1 � CC�FC
A� � CC�FC

W� −mCTICTITPSP�ωP∕I�

8><
>:

uG

vG

wG

9>=
>;

�mCSC�ωC∕I�SC�ωC∕I�

8><
>:
xCG

yCG

zCG

9>=
>;� TIC

8>><
>>:
XTnT

YTnT

ZTnT

9>>=
>>; (18)

B2 � CP�FP
A� � CP�FP

W� −mPSP�ωP∕I�

8><
>:

uG

vG

wG

9>=
>;

− SP�ωP∕I�

0
B@IAM

8><
>:

~u

~v

~w

9>=
>;� IH

8><
>:
pP

qP

rP

9>=
>;
1
CA

�mPSP�ωP∕I�SP�ωP∕I�

8><
>:
xPG

yPG

zPG

9>=
>; (19)

B3 � TICT
T
IPCP�MG� − SC�ωC∕I�IC

8><
>:
pC

qC

rC

9>=
>;

� SC�r�C→F�TIC

8>><
>>:
XTnT

YTnT

ZTnT

9>>=
>>; (20)

B4 � CP�MP
A� �

XN
i�1

SP�r�P→Ai
�CP�Fi

A� − CP�MG�

− �SP�r�P→MP
�SP�ωP∕I�IAM � SP�ωP∕I�IH �

8><
>:

~u

~v

~w

9>=
>;

− ��SP�r�P→MP
�SP�ωP∕I� � SP�VMP∕I��IH

� SP�ωP∕I��IP � IAI��

8><
>:
pP

qP

rP

9>=
>; (21)

Matrix A is a block 4 × 4 matrix in which each element is a 3 × 3
matrix. Rows 1–3 are forces acting on the cradle mass center
expressed in the cradle frame, and rows 7–9 are the moments about
the cradle mass center, also in the cradle frame. Rows 4–6 are forces
acting on the parafoil mass center expressed in the parafoil frame, and
rows 10–12 are the moments about the parafoil mass center, also in
the parafoil frame. These equations are inertially coupled due to the
selection of the position degrees of freedom as the inertial position
vector components of the coupling joint. The constraint force is a

quantity of interest to monitor during simulation and therefore is
retained in the dynamic equations rather than being algebraically
eliminated. The aerodynamic forces on the canopy panels are
expressed in terms of lift and drag coefficients, which are functions of
the angle of attack α of each panel, αi � tan−1� ~wi∕ ~ui�, as shown in
Eqs. (22) and (23). Equation (24) defines the canopy aerodynamic
forces in the body reference frame, accounting for the shape of the
canopy. Each panel is modeled as a flat plate that is rotated about two
angles to approximate the shape of the canopy [6]. For the outboard
panels, the lift and drag coefficients are modified by the control
deflection δi. For all left panels, the control deflection is called the left
brake δL Similarly, for all right panels, the control deflection is called
the right brake δR The control system for the left and right brakes is
explained in Sec. II.C

CL;i � CL0;i � CLα;iαi � CLδ;iδi (22)

CD;i � CD0;i � CDα2;iα
2
i � CDδ;iδi (23)
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CP�FP
Ai
� � 1

2
ρSiTP;i

0
B@CL;i

������������������
~u2i � ~w2

i

q 8><
>:

~wi

0

− ~ui

9>=
>;

� CD;i

�����������������������������
~u2i � ~v2i � ~w2

i

q 8>><
>>:

~ui

~vi

~wi

9>>=
>>;

1
CCA (24)

The aerodynamic force on the cradle from drag is assumed to act at
the cradle’s center, as shown below using the component operator
CB� �, which expresses the components of a vector in the B frame

CC�FC
A� �

1

2
ρV2

CSCCDC

8<
:
uCA
vCA
wSA

9=
; (25)

Note that uCA, vCA, and wCA are cradle aerodynamic velocities in
the cradle frame [8]. It is well known that bodies with small mass-to-
volume ratios experience aerodynamic forces and moments from
acceleration in fluids [9] and produce apparent mass loads. Because
of the relatively small mass-to-volume ratio of parafoils, apparent
mass must be considered to properly model dynamic response of
these vehicles. For a parafoil with spanwise camber, the apparent
mass and inertia can be written as

CP�FP
AM� � IAM

8>><
>>:

_~u

_~v

_~w

9>>=
>>;� IH

8>><
>>:

_pP

_qP

_rP

9>>=
>>;� SP�ωP∕I�IAM

8>><
>>:

~u

~v

~w

9>>=
>>;

� SP�ωP∕I�IH

8><
>:
pP

qP

rP

9>=
>; (26)

CP�MP
AM� � IH

8>><
>>:

_~u

_~v

_~w

9>>=
>>;� IAI

8>><
>>:

_pP

_qP

_rP

9>>=
>>;� SP�ωP∕I�IH

8><
>:

~u

~v

~w

9>=
>;

� �SP�ωP∕I�IAI � SP�VMP∕I
�IH�

8><
>:
pP

qP

rP

9>=
>; (27)

which uses the aerodynamic velocity of the apparentmass as given by
the following equation:

8<
:

~u
~v
~w

9=
; �

8<
:

uG
vG
wG

9=
;� SP�ωP∕I�

8<
:
xGMp

yGMp

zGMp

9=
; (28)

The subscript GMP denotes the components of vector r�P→Mp
.

The inertia matrix IAM is the basic apparent mass matrix, IAI is the
basic apparent inertia matrix, and IH is the spanwise camber matrix

IAM �
2
4A 0 0

0 B 0

0 0 C

3
5 (29)

IAI �
2
4P 0 0

0 Q 0

0 0 R

3
5 (30)

IH �
2
4 0 H 0

H 0 0

0 0 0

3
5 (31)

The applied moment on the parafoil and cradle contains
contributions from the coupling joint’s resistance to twisting. The
resistance to twisting of the coupling joint is modeled as a rotational
spring and damper

CP�MG� �
8<
:

0

0

KG�ψP − ψC� � CG� _ψP − _ψC�

9=
; (32)

Finally, the weight force vectors on both the parafoil and cradle in
their respective body axes are given in the following equations

CP�FP
W� � mPg

8<
:

−sθp
sϕp

cθp
cϕp

cθp

9=
; (33)

CC�FC
W� � mCg

8<
:

−SθC
sϕC

cθC
cϕC

cθC

9=
; (34)

B. Tether Model

Figure 3 depicts the tether with both ends attached to the tow
vehicle at point R and the cradle at point F. The tether is
approximated as nT beads and nT � 1 elastic elements. A standard
linear solid viscoelastic element is used to connect beads, as depicted
in the enlarged portion of Fig. 3 [10–13]. Collectively, the motion of
the beads defines themotion of the tether line. Each bead on the tether
is a point mass possessing three translational degrees of freedom.
Forces that drive the motion of the beads include bead weight,
aerodynamic forces, and adjacent viscoelastic element line forces.
The dynamic equations for one bead on the tether are structurally

the same for all beads, and so the formulas to follow are shown only
for the ith bead on the tether line8<

:
�xTi

�yTi

�zTi

9=
; � 1

mi

8<
:
XTi

− XTi�1
� XDi

YTi
− YTi�1

� YDi

ZTi
− ZTi�1

� ZDi

9=
;�

8<
:
0

0

g

9=
; (35)

In Eq. (35),mi is themass of the ith bead on a tether element, and g
is the gravitational constant. The termsXTi

, YTi
,ZTi

andXTi�1
, YTi�1

,
ZTi�1

represent the viscoelastic line force vector components
expressed in the inertial reference frame of the tether elements
adjacent to the ith bead. The line forces are caused by strain of the
tether and are directed parallel to the line. Tether line flexibility
generates resistive stiffness and damping forces caused by tether line
extension and extension rate. The terms XDi, YDi, and ZDi are
aerodynamic drag forces applied to each bead. To compute the
viscoelastic line forces, it is useful to define a tether element position
and velocity difference vector for each tether element. The difference
vectors are formed by subtracting the position or velocity
components of the i� 1 tether bead (or ending connection) from

Fig. 3 Tether schematic.
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the ith tether bead component (or beginning connection). This results
in nT � 1 difference vectors for the tether line. The termsΔxTi

,ΔyTi
,

andΔzTi
represent the components of the position difference vectors,

whereas the velocity difference vectors are used to construct the
stretch rate _sTi

. Using the tether element position difference and
velocity difference data, an expression for the elastic line force can be
directly formed

8<
:
XTi

YTi

ZTi

9=
; � FTi

sTi

8<
:
ΔxTi

ΔyTi

ΔzTi

9=
; (36)

Equations (37) and (38) provide expressions for the elastic line
forceFTi

in terms of the strain and strain rate of the viscoelastic tether
element

_FTi
�Kv

Cv

FTi
�
��Ks�Kv�_sTi

�KvKs

Cv
�sTi

−LT�; if sTi
−LT >0

0; if sTi
−LT ≤0

�

(37)

sTi
�

������������������������������������������
Δx2Ti

� Δy2Ti
� Δz2Ti

q
(38)

In Eq. (37), Kv, Cv, and Ks are the viscous stiffness, viscous
damping, and static stiffness coefficients respectively, for a
viscoelastic line element. Also, LT is the nominal unstretched line
length of a tether element. All individual tether elements have the
same static and viscous stiffness coefficients, viscous damping
coefficient, and unstretched line length. The first condition inEq. (37)
represents the normal tension condition between two adjacent beads.
In this case, the distance between the two adjacent beads is greater
than the unstretched elastic tether element length, and a nonzero
tension force in the tether element persists. The second condition in
Eq. (37) is the slack condition. It stipulates that, when the unstretched
elastic tether element length is greater than the distance between two
adjacent beads, the elastic force declines at a rate dictated by the
term �Kv∕Cv�FTi

.
Edge point position and velocity of the tether is required for

viscoelastic line force computation. For edge points of the tether that
are fixed on a body of the system, expressions for the position and
velocity are formed from the motion of the connection point on the
body. Thus, the first element position and velocity is equal to the
position and velocity of the point R governed by the towed body
motion. The nT � 1 element position and velocity is given by the
position and velocity of the cradle at pointF.Mathematically, this can
be written using the following equations:

8<
:
xT1

yT1

zT1

9=
; �

(
xR
yR
zR

)
;

8<
:
xTnT�1

yTnT�1

zTnT�1

9=
; �

(
xF
yF
zF

)
(39)

8<
:

_xT1

_yT1

_zT1

9=
; �

8<
:

_xR
_yR
_zR

9=
;;

8<
:

_xTnT�1

_yTnT�1

_zTnT�1

9=
; �

8<
:

_xF
_yF
_zF

9=
; (40)

The aerodynamic force on the tether line includes skin-friction
drag along the tether line and flat-plate drag perpendicular to the
tether line [14]. To determine the tether drag, it is useful to define a
unit vector with measure numbers given by

8<
:
rxi
ryi
rzi

9=
; � 1

LT

8<
:
ΔxTi

ΔyTi

ΔzTi

9=
; (41)

The skin-friction and flat-plate drag for each element are given by

DSi �
1

2
ρVSi jVSi jAwCS (42)

DFi
� 1

2
ρV2

Fi
AwCF (43)

in which CS and CF are the skin-friction and flat-plate drag
coefficients,VSi andVFi

are themagnitude of velocity of the ith bead
parallel and normal to the ith tether element, andAw is thewetted area
of the ith bead. The tether bead aerodynamic forces expressed in the
inertial frame are then

8><
>:
XDi

YDi

ZDi

9>=
>; � DSi�1

8>><
>>:
rxi�1

ryi�1

rzi�1

9>>=
>>;�DSi

8>><
>>:
rxi

ryi

rzi

9>>=
>>;� DFi�1

VFi�1

8>><
>>:
VF;x;i�1

VF;y;i�1

VF;z;i�1

9>>=
>>;

�DFi

VFi

8>><
>>:
VF;x

VF;y

VF;z

9>>=
>>; (44)

C. Control System

For system configurations using active control, a proportional plus
derivative control law is employed using canopy roll-angle feedback.
Canopy roll-angle feedback is obtained bymeasuring the roll angle of
the risers in combination with the roll angle of the cradle. The roll
angle of the risers can be seen in Fig. 4, inwhich both the left (ϕL) and
right (ϕR) riser angles are measured from the vertical cradle axis.
During initial experimental tests, it was found that potentiometers
could be placed on either side of the cradle to obtain left and right riser
angles with error levels under 10 deg. During a separate design
iteration, the yaw angle was used as feedback; however, no benefit
was found when using the yaw angle as feedback. Therefore, the
control system presented here was found to be the easiest to
implement on a practical system.

Fig. 4 Example cradle enlarged to show riser roll angles and riser width.
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Using the riser roll angles, the canopy roll angle is then found using

ϕPi
� 0.5�ϕL � ϕR� � ϕC (45)

in which ϕC is the cradle roll angle. The canopy roll angle is
processed by a derivative filter using the equation below to obtain the
derivative of the canopy roll angle

_ϕPi
� 2�ϕPi

− ϕPi−1
� � _ϕPi−1

�2τ − Δt�
2τ� Δt

(46)

in which τ is the inverse of the derivative filter cutoff frequency and
Δt is the time step between calculations. Using these twovalues, a PD
controller can be developed to create left and right brake deflection
commands

Δ � KPϕPi
� KD

_ϕPi
(47)

δL;COMM � jΔj � δS; δR;COMM � δS; Δ ≥ 0 (48)

δR;COMM � jΔj � δS; δL;COMM � δS; Δ < 0 (49)

The control scheme presented here seeks to null the roll angle of
the canopy. If the signalΔ is positive, the left brake is applied and the
right brake returns to the nominal symmetric brake value. If Δ is
negative, the opposite occurs. The net result is that the canopy resists
any nonzero roll angle that can reduce the onset of lockout. Note that
each brake is modeled as a first-order system using the equations
below

_δR � T�δR;COMM − δR� (50)

_δL � T�δL;COMM − δL� (51)

in which T is the time constant. The left and right brakes are included
in the model using Eqs. (22) and (23), in which δi � δR for all right
panels and δi � δL for all left panels. A rate limiter was also added to
avoid nonrealistic motion such that j_δij ≤ ωmax.

III. Simulation Setup

The example parafoil canopy used in this analysis is based on the
Spiruline L made by Little Cloud, which has a wingspan of 8.8 m, a
chord of 2.1 m, and an area of 18.5 m2. The canopy weight is 3.7 kg,
with moments of inertia of 45.53, 9.65, and 45.86 kg · m2 along the
x, y, and z axes, respectively. The apparent mass coefficients A, B,
and C are 0.984, 0.0988, and 36.405 kg, respectively. The rotational
apparent mass coefficients P, Q, and R are 194.21, 7.53, and
6.91 kg · m respectively. The distance from the gimbal joint to the
canopy center of mass is WL Parafoil � −5.75 m.
The canopy is split into nine panels to approximate the curvature of

the wing. The canopy zero lift aerodynamic coefficients for each
panel are set to that of a NACA 0015, thus CL0 � 0.0 and
CD0 � 0.018. The lift and drag profiles for each panel are set such
that the canopy has a nominal glide ratio of 8 when the incidence
angle of the canopy is set to 3.5 deg. This gives a nominal angle of
attack on the canopy of 8 deg when gliding without brake deflection
with a cradle weight of 80 kg, as given by the Little Cloud
specifications. Using these parameters, CLα � 5.203 and
CDα2 � 1.689. The nominal symmetric brake deflection is set to
40% of its maximum deflection. The maximum brake deflection is
68 cm, thus 40% is 25.2 cm. To obtain the brake coefficients, an
experiment was performed in which the tension value in the line was
measured using a load sensor. This tension value was matched in

simulation by varying CLδ. The control coefficient for lift was set to
CLδ � 0.7. During canopy brake deflection, the L∕D ratio is kept
reasonably constant, thus CDδ � 0.064. Brake deflections are
governed by a first-order filter with a time constant of 2.0, which was
also obtained by a simple experiment in which the brakes were
initially set to zero and commanded to 100%. The brakes are rate
limited to 16 cm∕s. The control system gains are set such that
KP � 4, KD � 1, τ � 0.1 s, and f � 10 Hz.
The canopy is carrying a custom-made cradle with an area of

0.4337 m2 and a weight of 90 kg. The moments of inertia are 9.38,
6.05, and 6.24 kg · m2 along the x, y, and z axes, respectively. The
distance from the gimbal joint to the cradle center of mass is WL
Cradle � 0.47 m. The cradle flat-plate drag is equal to 1.0. The
tether connection point is set to SL Tether � 0.3 m and WL
Tether � 0.23 m. The yaw stiffness and damping of the connection
coupling joint is set to 30 N∕�m · rad� and 10 N · m∕�rad∕s�.
The tether line is based on a liquid crystal polymer fiber made by

Vectran with mass per unit length of 0.00272 kg∕m. The total
unstretched length of the tether is 478 m, which results in a total
weight of 1.3 kg. The diameter of the tether is 0.00196 m and has a
maximum stiffness load of 4,884N at 3.8% elongation. The flat-plate
and skin-friction drag coefficients are set to 1.0. The number of beads
used to discretize the tether was set to 10 beads, based on a
convergence analysis run during initial simulations.

IV. Example Simulation Results

Consider a scenario in which the canopy is trimmed to a steady,
level condition behind the tow vehicle, which has a velocity of
12.86 m∕s. In this scenario, the pitch angle of the canopy is 5.09 deg,
the pitch angle of the cradle is −5.45 deg and the angle of the tether
with respect to the vertical axis is 16.12 deg. To induce the lockout
condition, the parafoil experiences a constant 2m∕s side wind, and
the yaw stiffness is reduced to 20 N · m∕rad. This reduction in yaw
stiffness is a direct cause of lockout and is explained in Sec. V.A.
Figures 5–7 show the canopy roll, pitch, and yaw angles with and
without the control system enabled. These figures also show an
enlarged figure from 0 to 20 s to show detail. The initial response of
the entire system is to roll away from the disturbance and turn into the
wind. This offset in roll angle causes the system to sideslip, which
initially causes the roll angle to return to 0 deg; however, the lateral
deflection increases tension on the line, which causes the roll angle to
increase again until it rolls past 30 deg. Meanwhile, due to the
increase in the canopy roll angle, the canopy yaw angle begins to
increase around 80 s until it reaches a value greater than 30 deg.
Without active control, these angles grow without bound. Thus, the
system is unstablewithout control. However, with the control system
activated, the roll angle is quickly returned to andmaintained at 0 deg.

Fig. 5 Canopy roll angle (deg) vs time (s) with enlarged insert to show
detail.
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This allows the yaw angle to attain an equilibrium value of about
−9 deg, which corresponds to the canopy turning into the wind.
Figure 8 shows brake deflection during this event, as well as an

enlarged figure. The nominal brake deflection is 40%; and, with the
control system activated, roughly 15% extra control effort is needed
to stabilize the system.Note that the brakes do not immediately return
to nominal when commanded to zero due to the first-order nature of
the brake lines. The net result is that left and right brakes can be
deflected simultaneously. The lockout condition explained here can
also be visualized easily in three dimensions if the parafoil is plotted
with respect to the tow point as shown in Fig. 1.

V. Stability Analysis for Towed Systems

Simulation results shown previously (Figs. 5–8) for the passive
configuration provide an example of an unstable lockout condition in
which the canopy turns away from the tether line of action and fails to
remain airborne. The overall geometry of the parafoil and cradle
system alters the onset of lockout. This includes the connection joint
properties, connection point of the tether on the cradle, the distance
between the connection coupling joint to the cradle and canopy, and,
finally, cradle weight. Stability of the system as a function of these
parameters is determined through analysis of numerically linearized
models about an equilibrium point. To obtain the numerically
linearized models, the trim state of a particular configuration is
obtained by integrating the equations of motion until the system
reaches steady state with all state derivatives (except the forward

velocity) less than 1 × 10−8. This trimming procedure was found to
work robustly for all configurations examined. Once the trim state of
a configuration is obtained, a linear time-invariant (LTI) model is
obtained numerically using central finite differencing to compute the
Jacobian of the nonlinear model [15]. Each state is perturbed from
trim by 1 × 10−6 to compute numerical derivatives to produce an 18-
state LTI model. This results in 18 associated eigenvalues (modes)
and eigenvectors (mode shapes). If the real part of any of these 18
eigenvalues is positive, the system is unstable. In this analysis, a
lateral real mode becomes unstable under certain circumstances. The
dominant state variables of this mode are lateral quantities, including
lateral translational motion, parafoil roll angle, parafoil yaw angle,
cradle yaw angle, and cradle roll angle. Subsequent analyses refer to
this mode as the lockout mode.

A. Connection Coupling Joint

The connection joint has a built in stiffness and damping along the
yaw axis of the cradle and canopy. The riser width, or the distance
between the left and right risers (Fig. 4), is the main driver for the
stiffness of this joint. Increasing the width of the risers increases the
yaw stiffness. Figure 9 shows the lockout mode as a function of yaw
stiffness and damping for both the uncontrolled and controlled
configurations.
Notice that the yaw damping coefficient has little effect on this

mode. However, this lateral mode becomes positive when the

Fig. 8 Brake deflection (%) vs time (s) with enlarged insert to show
detail.

Fig. 9 Lockout mode vs yaw stiffness.

Fig. 6 Canopy pitch angle (deg) vs time (s) with enlarged insert to show
detail.

Fig. 7 Canopy yaw angle (deg) vs time (s) with enlarged insert to show
detail.
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stiffness of the joint is reduced beyond about 25 N · m∕rad. The
results here make intuitive sense due to the nature of the tether force.
The tether pulls on the cradle and causes the cradle to turn toward the
tether line of action. This difference between the cradle and canopy
heading angle induces a yaw moment on the canopy, which serves to
orient the canopy toward the tether line of action. If the yaw moment
is not large enough, the canopy will grow without bound rather than
reach steady state, and lockout will occur. Figure 9 also shows the
result of enabling the control systemwhile changing the yaw stiffness
and damping. This figure indicates that the lateral mode is always
negative and therefore stable with the control system enabled. With
the control system disabled, the stiffness must be larger than
25 N · m∕rad. The explanation of this result is due to the roll stability
of the canopy. The canopy itself has a tendency to turn itself into the
wind; however, the roll dynamics are faster than the yaw dynamics.
This can be seen in Fig. 5. The yawmode of the canopy is inherently
stable unless the roll angle of the canopy is greater than a critical
value. That is, the yaw angle is a function of the roll angle. When the
roll angle is well behaved and bounded, the yaw angle settles to a
finite value. Once the roll angle reaches a critical angle, the yaw angle
no longer settles and begins to grow without bound. Thus, active
control of the roll anglemaintains the canopy to remain below critical
levels, and thus the system will have ample time to turn itself into the
wind. With the control system disabled, the only restoring force is
done by the yaw stiffness of the coupling joint, which must be
increased to orient the system into the wind.

B. Tether Connection Point

Amain driver of lockoutmode stability is the canopy’s tendency to
yaw toward the tether line. This is accomplished by the tether line
force yawing the cradle, creating an offset in yaw angle between the
cradle and the canopy. This difference in yawangle induces amoment

in the canopy, which in turn yaws toward the tether. This restoring
moment placed on the cradle can be altered by increasing the stiffness
of the connection coupling joint but also by changing the location of
the tether attachment point. The tether attachment point can be seen in
Fig. 2 and is denoted as point F. Figure 10 shows the stability
boundaries as a function of the tether attachment point, as well as
small figures to indicate the change in tether attachment point. This is
equivalent to moving point F in Fig. 2. The dashed line in Fig. 10
represents the stability boundary for the uncontrolled system, and the
solid line represents the stability boundary for the controlled system.
The coordinates in Fig. 10 are the distances from the center ofmass of
the cradle (0, 0) to the tether attachment point. Here, it is clear that a
forward attachment point is critical for a passively stable system. The
boundary is angled because the tether line of action is angled at 16 deg
from the vertical. The explanation for this forward connection point
can be explained by examining the yawmoment placed on the cradle.
If the tether is attached far forward, a sideslip angle will force the
cradle to turn toward the tether line of action. Provided there is
enough yaw stiffness, the offset in yaw angle between the canopy and
the cradlewill cause the canopy to turn toward the tether line of action
as well. If the tether is connected closer to the center of mass or even
behind it, this yawing tendency will be removed and the system
becomes unstable. The control system here acts to prevent this
instability; however, there is a point at which the control system is not
capable of achieving stability. Viewing Fig. 11, the magnitude of the
lateral eigenvalue can be seen for both the controlled system (left) and
the uncontrolled system (right). When the tether is attached in the
upper left corner, the eigenvalue becomes positive and quite large
compared with the stable region. Physically, the upper left corner
represents an area where the cradle flips upside down, representing a
nonpractical connection point. The solid and dashed lines in the
figure represent the stability boundaries between a positive and
negative eigenvalue.

C. Canopy and Cradle Rigging Length

Another important attribute for lockout mode stability is the
canopy’s tendency to remain upright during maneuvers. A way to
alter these dynamics is to change the rigging length between the
gimbal joint and the cradle center of mass (WL Cradle) and the
rigging length from the gimbal joint to the parafoil center of mass
(WL Parafoil) as shown in Fig. 2. Changing these parameters will
change the roll inertia of the system, which directly affects the roll
response of the system. Figure 12 shows the dynamic stability
boundaries versus canopy and cradle rigging lengths, as well as small
graphics indicating the overall change in geometry. The figure on the
left shows lockout mode stability boundaries for the control system
disabled and enabled. The graph clearly indicates that the upper right
corner is the most stable region. This region corresponds to the
system having the most roll inertia by increasing the canopy and
cradle rigging lengths. Moving from the top right corner to the lower
left corner shrinks the entire system and causes the system to become
more and more unstable. However, with the control system enabled,

Fig. 10 Lockout mode stability boundaries as a function of tether
attachment point.

Fig. 11 Lockout mode as a function of tether attachment point: (left) controlled; (right) uncontrolled.

Article in Advance / MONTALVO AND COSTELLO 9

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

Ja
nu

ar
y 

18
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

15
45

 



this stability boundary shifts toward the lower left corner to increase
the size of the stable region.
The right figure shows the value of the real part of the lateral

eigenvalue and the stability boundary for the uncontrolled system.
This graph indicates that the canopy and cradle rigging length play a
large role in the overall stability of the system.

D. Cradle Mass and Symmetric Brakes

In addition to the geometry of the system, the tension in the tether
plays an important role in the determination of stability.A simpleway
to change the tension in the tether is to deflect the symmetric brakes
away from their nominal position of 40%. Increasing symmetric
brakes on a parafoil increases tension due to an increase in lift on the
canopy. In addition, the tension can be altered through the cradle
mass. The cradle mass affects the tension in the tether inversely. A
decrease in the cradle mass increases the tension in the tether.
Initially, the lift in the canopy is equal to the weight of the entire
system plus the tension. When the mass of the canopy is reduced, the
lift stays constant. Thus, the tension must increase to balance out the
forces applied to the system. Figure 13 shows the lockout mode
stability boundary (left) versus cradle mass and symmetric brake
deflection. The upper right region corresponds to a region where
there is not enough lift produced on the canopy, and the system
cannot achieve trim. The left region corresponds to a zone of high
tension that leads to lockout mode instability. This figure also shows
the lockout mode for the uncontrolled system (right). Here, it is clear
that the eigenvalue becomes positive for high line tension that directly
correlates to the lockout condition seen in the literature [6].
However, with the control system enabled, the system is stable for

all configurations except the upper right region. Figure 14 shows the
equilibrium tension value as a function of both the mass of the cradle
and the symmetric brake deflection. The nominal configuration of
90 kg and 40% symmetric brake has a tension of about 680 N.
Increasing symmetric brake deflection or decreasing the cradle mass
increases the tension in the tether. However, the lift produced by the

canopy is largely a function of the symmetric brake deflection. Thus,
when the symmetric brake deflection is at 0%, the lift produced on the
canopy is at its lowest. This reduction in lift causes a decline in roll
stability, which produces the slight taper in the stability contour
in Fig. 13.

VI. Conclusions

A dynamic analysis of the lockout condition exhibited by towed
parafoil systems has been investigated here, with an emphasis placed
on geometric changes that can be made to the system to reduce the
onset of lockout as well as a control system that further reduces the
onset of lockout. Simulation results revealed that a minimum yaw
stiffness is required in the gimbal joint. In addition, moving the tether

Fig. 12 (Left) Lockout mode stability Boundaries and (right) uncontrolled lateral mode as a function of canopy and cradle rigging length (m).

Fig. 13 (Left) Lockout mode stability boundaries and (right) uncontrolled lateral mode as a function of cradle mass (kg) and symmetric brake
deflection (%).

Fig. 14 Tension (N) vs cradle mass (kg) and symmetric brake
deflection (%).
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connection point forward of the center of mass of the cradle seeks to
orient the cradle toward the tether. This tendency, coupled with the
high stiffness in the gimbal joint, orients the parafoil into the wind,
which inhibits lockout from occurring. Furthermore, the roll inertia
of the parafoil also directly affects the lockout condition due to the
coupled nature between the yawand roll modes of the canopy.Here, a
large distance between the parafoil and cradle results in a larger roll
inertia, which inhibits lockout from occurring. Finally, the tension in
the tether was also found to be a driver of lockout. Increasing the
tension in the tether, by either reducing the mass of the cradle or
increasing symmetric brake deflection, results in a less stable system.
All of these boundaries were shown to increase by installing a left and
right brake deflection controller using feedback from the canopy roll
angle. Active control of the roll mode of the canopy expanded the
stability envelope for all configurations investigated. Note, however
that no claim was made about the tracking error performance of this
system. If errors are introduced into the system, the tracking error of
the system will increase. Further simulations revealed that a bias in
the roll angle could negate the effects of the active control system. If
the bias in the roll angle is larger than 15 deg, the control system is
incapable of keeping the system airborne. However, if the error in the
feedback signals is below this critical value, the stability envelope is
preserved at the cost of poor tracking performance. These results
were revealed using a sophisticated 9 DOF parafoil and cradle model
coupled to a viscoelastic tether model. A linearization procedure was
also conducted in order to compute the lockout mode as a function of
geometric changes while keeping the tether parameters fixed. An
interesting study, therefore, would be to investigate tether parameters
such as tether diameter, stiffness, or length and to examine their
effects on the lockout instability. Still, the addition of the 9 DOF
model highlighted unstable modes caused by the cradle and parafoil
obtaining different orientations during flight. In Puranik et al. [4], the
results indicate that, if thewindspeed experienced by the system is too
large, the systemwill be unable to place the vehicle in trim. Thework
presented here provides a nice complement by analyzing the
fundamental modes based on geometric changes to the system. Plant
stability, coupled with the stability boundaries in [4], should create a
nice picture of what geometric parameters can be varied to stabilize
the system andwhat winds can be experienced before lockout occurs.
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